Combining backward-looking information and forward-looking information in portfolio optimization

HUANG Yi, ZHU Wei, ZHU Shushang, LI Duan

Systems Engineering - Theory & Practice ›› 2021, Vol. 41 ›› Issue (4) : 861-881.

PDF(2031 KB)
PDF(2031 KB)
Systems Engineering - Theory & Practice ›› 2021, Vol. 41 ›› Issue (4) : 861-881. DOI: 10.12011/SETP2020-0900

Combining backward-looking information and forward-looking information in portfolio optimization

  • HUANG Yi1,2, ZHU Wei3, ZHU Shushang1, LI Duan4
Author information +
History +

Abstract

Under the framework of mean-variance analysis, investors need to estimate the mean vector and covariance matrix of asset returns to make investment decision. The most common estimation method is called "backward-looking" method since it relies only on historical data. However, it does not use the "forward-looking" information implied by the market variables, such as asset prices, and then cannot predict the future well. In this paper, we consider the general situation that market participants are consisting of informed investors and noise traders, and extract the "forward-looking" information on asset returns implied in the equilibrium market portfolio. By combining the historical "backward-looking" information with the market implied "forward-looking" information via Bayesian analysis, we propose a "combined" method for return prediction. The theoretical analysis show that the "combined" method can adaptively select more "forward-looking" information when the informed investor has a higher market share, a lower risk-averse degree, or the noise trader has a lower noise trading intensity; otherwise, it will use more "backward-looking" information. Both the simulation experiments and the empirical tests demonstrate that the "combined" model can provide more flexible and robust prediction on asset returns in portfolio management.

Key words

portfolio / Bayesian analysis / "forward-looking" information / "backward-looking" information

Cite this article

Download Citations
HUANG Yi , ZHU Wei , ZHU Shushang , LI Duan. Combining backward-looking information and forward-looking information in portfolio optimization. Systems Engineering - Theory & Practice, 2021, 41(4): 861-881 https://doi.org/10.12011/SETP2020-0900

References

[1] Markowitz H. Portfolio selection[J]. The Journal of Finance, 1952, 7(1):77-91.
[2] Morgan J P. RiskMetricsm TM-Technical document[M]. Morgan Guaranty Trust Company of New York, 1996.
[3] Rockafellar R T, Uryasev S. Optimization of conditional value-at-risk[J]. Journal of Risk, 1999, 2(3):1071-1074.
[4] 柏林, 赵大萍, 房勇, 等. 基于投资者观点的多阶段投资组合选择模型[J]. 系统工程理论与实践, 2017, 37(8):2024-2032. Bo L, Zhao D P, Fang Y, et al. Multi-period portfolio selection model based on investor's views[J]. Systems Engineering-Theory & Practice, 2017, 37(8):2024-2032.
[5] Cui X T, Zhu S S, Sun X L, et al. Nonlinear portfolio selection using approximate parametric value-at-risk[J]. Journal of Banking & Finance, 2013, 37(6):2124-2139.
[6] 林宇,梁州,林子枭, 等. 基于高维R-vine Copula的金融市场投资组合优化研究[J]. 系统工程理论与实践, 2019, 39(12):3061-3072. Lin Y, Liang Z, Lin Z X, et al. Research on financial market portfolio optimization based on high-dimensional R-vine Copula[J]. Systems Engineering-Theory & Practice, 2019, 39(12):3061-3072.
[7] 葛浩, 李仲飞. 马尔可夫市场中的一般多期均值——方差资产负债管理问题的时间一致策略[J]. 系统科学与数学, 2019, 39(10):1609-1631.Ge H, Li Z F. Time-consistent strategy for general multi-period mean-variance asset-liability management in a Markov market[J]. Journal of Systems Science and Mathematical Sciences, 2019, 39(10):1609-1631.
[8] 葛浩, 李仲飞. 带机制转换和随机现金流的多期均值——方差资产负债管理问题的均衡策略[J]. 系统科学与数学, 2019, 39(12):1998-2024.Ge H, Li Z F. Equilibrium strategy for multi-period mean-variance asset-liability management with regime switching and a stochastic cash flow[J].Systems Science and Mathematical Sciences, 2019, 39(12):1998-2024.
[9] Jobson J D, Korkie R. Estimation for markowitz efficient portfolios[J]. Journal of the American Statistical Association, 1980, 75(371):544-554.
[10] Michaud R O. The markowitz optimization enigma:Is ‘optimized’ optimal?[J]. Financial Analysts Journal, 1989, 45(1):31-42.
[11] Best M J, Grauer R R. On the sensitivity of mean-variance-efficient portfolios to changes in asset means:Some analytical and computational results[J]. The Review of Financial Studies, 1991, 4(2):315-342.
[12] Green R C, Hollifield B. When will Mean-Variance efficient portfolios be well diversified?[J]. The Journal of Finance, 1992, 47(5):1785-1809.
[13] Chopra V K, Ziemba W T. The effect of errors in means, variances, and covariances on optimal portfolio choice[J]. The Journal of Portfolio Management, 1993, 19(2):6-11.
[14] Britten-Jones M. The sampling error in estimates of Mean-Variance efficient portfolio weights[J]. The Journal of Finance, 1999, 54(2):655-671.
[15] Siegel A F, Woodgate A. Performance of portfolios optimized with estimation error[J]. Management Science, 2007, 53(6):1005-1015.
[16] Merton R C. On estimating the expected return on the market:An exploratory investigation[J]. Journal of Financial Economics, 1980, 8(4):323-361.
[17] Ledoit O, Wolf M. A well-conditioned estimator for large-dimensional covariance matrices[J]. Journal of Multivariate Analysis, 2004, 88(2):365-411.
[18] Jagannathan R, Ma T. Risk reduction in large portfolios:Why imposing the wrong constraints helps[J]. The Journal of Finance, 2003, 58(4):1651-1683.
[19] DeMiguel V, Garlappi L, Uppal R. Optimal versus naive diversification:How inefficient is the 1/N portfolio strategy?[J]. The Review of Financial Studies, 2009, 22(5):1915-1953.
[20] Jacobs H, Müller S, Weber M. How should individual investors diversify? An empirical evaluation of alternative asset allocation policies[J]. Journal of Financial Markets, 2014, 19(1):62-85.
[21] Zhu S S, Fan M J, Li D. Portfolio management with robustness in both prediction and decision:A mixture model based learning approach[J]. Journal of Economic Dynamics & Control, 2014, 48:1-25.
[22] Black F, Litterman R. Global portfolio optimization[J]. Financial Analysts Journal, 1992, 48(5):28-43.
[23] Black F, Litterman R. Global asset allocation with equities, bonds, and currencies[J]. Fixed Income Research, 1991, 2:1-44.
[24] 尹力博, 韩立岩. 国际大宗商品资产行业配置研究[J]. 系统工程理论与实践, 2014, 34(3):560-574. Yin L B, Han L Y. Study of international commodity assets industry allocation strategy[J]. Systems Engineering-Theory & Practice, 2014, 34(3):560-574.
[25] Idzorek T. A step-by-step guide to the Black-Litterman model:Incorporating user-specified confidence levels[J]. Forecasting Expected Returns in the Financial Markets, 2007:17-38.
[26] He G L, Litterman R. The intuition behind Black-Litterman model portfolios[J]. SSRN Electronic Journal, 2002:121-140.
[27] Beach S L, Orlov A G. An application of the Black-Litterman model with EGARCH-M-derived views for international portfolio management[J]. Financial Markets & Portfolio Management, 2007, 21(2):147-166.
[28] 凌爱凡, 陈骁阳. 嵌入GARCH波动率估计的Black-Litterman投资组合模型[J]. 中国管理科学, 2018, 26(6):17-25. Ling A F, Chen X Y. The Black-Litterman portfolio model embedded GARCH to estimate volatility[J]. Chinese Journal of Management Science, 2018, 26(6):17-25.
[29] Creamer G G. Can a corporate network and news sentiment improve portfolio optimization using the Black-Litterman model?[J]. Quantitative Finance, 2015, 15(8):1405-1416.
[30] Haesen D, Hallerbach W G, Markwat T, et al. Enhancing risk parity by including views[J]. The Journal of Investing, 2017, 26(4):53-68.
[31] Fabozzi F J, Focardi S M, Kolm P N. Incorporating trading strategies in the Black-Litterman framework[J]. The Journal of Trading, 2006, 1(2):28-37.
[32] Sharpe W F. Expected utility asset allocation[J]. Financial Analysts Journal, 2007, 63(5):18-30.
[33] Bliss R R, Panigirtzoglou N. Option-implied risk aversion estimates[J]. The Journal of Finance, 2004, 59(1):407-446.
[34] Breeden D T, Litzenberger R H. Prices of state-contingent claims implicit in option prices[J]. Journal of Business, 1978, 51(4):621-651.
[35] Jackwerth J C, Rubinstein M. Recovering probability distributions from option prices[J]. The Journal of Finance, 1996, 51(5):1611-1631.
[36] Jackwerth J C. Recovering Risk aversion from option prices and realized returns[J]. The Review of Financial Studies, 2000, 13(2):433-451.
[37] Ait-Sahalia Y, Lo A W. Nonparametric risk management and implied risk aversion[J]. Journal of Econometrics, 2000, 94(1-2):9-51.
[38] Bollerslev T, Todorov V. Tails, fears, and risk premia[J]. The The Journal of Finace, 2011, 66(6):2165-2211.
[39] Ross S. The recovery theorem[J]. The Journal of Finance, 2015, 70(2):615-648.
[40] Kostakis A, Panigirtzoglou N, Skiadopoulos G. Market timing with option-implied distributions:A forward-looking approach[J]. Management Science, 2011, 57(7):1231-1249.
[41] DeMiguel V, Plyakha Y, Uppal R, et al. Improving portfolio selection using option-implied volatility and skewness[J]. Journal of Financial and Quantitative Analysis, 2013, 48(6):1813-1845.
[42] Bakshi G, Kapadia N, Madan D. Stock return characteristics, skew laws, and the differential pricing of individual equity options[J]. The Review of Financial Studies, 2003, 16(1):101-143.
[43] Kempf A, Korn O, Saßning S. Portfolio optimization using forward-looking information[J]. Review of Finance, 2015, 19(1):467-490.
[44] Kyle A S. Continuous auctions and insider trading[J]. Econometric, 1985, 53(6):1315-1335.
[45] Lehmann E L. Elements of large-sample theory[M]. New York:Springer, 1999.
[46] Sherman J, Morrison W J. Adjustment of an inverse matrix corresponding to a change in one element of a given matrix[J]. Annals of Mathematical Statistics, 1950, 21(1):124-127.
[47] Woodbury M A. Inverting modifed matrices[R]. Technical Report 42, Statistical Research Group. Princeton, NJ:Princeton University, 1950.
[48] Sharpe W F. A simplified model for portfolio analysis[J]. Management Science, 1963, 9(2):277-293.
[49] Lee W. Advanced theory and methodology of tactical asset allocation[M]. New York:John Wiley Sons, 2000.
[50] 恒生指数网站关于HSCI指数和VHSI指数的介绍. https://www.hsi.com.hk/schi. Introduction of HSCI index and VHSI index on the website of Hang Seng Index. https://www.hsi.com.hk/schi.
[51] 芝加哥期权交易所网站关于VIX指数的介绍. http://www.cboe.com/vix/. Introduction of VIX Index on the website of Chicago Board Options Exchange. http://www.cboe.com/vix/.

Funding

National Natural Science Foundation of China (71471180, 71721001, 71571062)
PDF(2031 KB)

1450

Accesses

0

Citation

Detail

Sections
Recommended

/