A hybrid estimation method of processing short-term lag year data in the compiling multi-regional input-output table

TANG Zhipeng, MEI Zi'ao

Systems Engineering - Theory & Practice ›› 2021, Vol. 41 ›› Issue (1) : 265-272.

PDF(1043 KB)
PDF(1043 KB)
Systems Engineering - Theory & Practice ›› 2021, Vol. 41 ›› Issue (1) : 265-272. DOI: 10.12011/SETP2020-0381

A hybrid estimation method of processing short-term lag year data in the compiling multi-regional input-output table

  • TANG Zhipeng1,2, MEI Zi'ao1,2
Author information +
History +

Abstract

Input-output analysis is a quantitative method of national economic decision-making, and input-output table is its data foundation. At present, multi-regional input-output (MRIO) table plays an important role in analyzing the socio-economic impact of multiple regions and the decision-making of resource and environmental protection. The core work of MRIO table compilation is to determine the inter-regional trade flow matrix of different products, and the establishment of the matrix depends more on the non-investigation mathematical method, the gravity model is an important method. Due to the large number of product data of MRIO table compiling demand, there is often a short time lag in some data samples. Ordinary linear regression or spatial regression was used to estimate the parameters of the compilation year under a general compiling hypothesis, which is the parameters of the compilation year could be replaced by the parameters of the short-term lag year because there is little change in short time for the structure of multi-regional trade. In order to make more effective use of the sample information of the short-term lag data, a hybrid estimation method is proposed in this paper. The results show that a hybrid estimation method can effectively improve the accuracy of prediction in processing short-term lag year data of compiling MRIO table through empirical analysis of trade flows of agricultural products, automobiles and steel among the 28 EU member states and Monte Carlo simulation. A hybrid estimation method combines the advantage of spatial regression with ordinary linear regression, it provides a good idea for compiling MRIO table.

Key words

input-output table / short-term lag / inter-regional trade / hybrid estimation method / Monte-Carlo simulation

Cite this article

Download Citations
TANG Zhipeng , MEI Zi'ao. A hybrid estimation method of processing short-term lag year data in the compiling multi-regional input-output table. Systems Engineering - Theory & Practice, 2021, 41(1): 265-272 https://doi.org/10.12011/SETP2020-0381

References

[1] Leontief W. Quantitative input and output relations in the economic system of the United States[J]. Review of Economic Statistics, 1936:18(3):105-125.
[2] Leontief W. The structure of American economy, 1919-1929:An empirical application of equilibrium analysis[M]. Cambridge:Harvard University Press, 1941.
[3] Leontief W. Interregional theory[M]//Leontief W, et al. Studies in the Structure of the American Economy. New York:Oxford University Press, 1953.
[4] Isard W. Interregional and regional input-output analysis:A model of a space economy[J]. The Review of Economics and Statistics, 1951:318-328.
[5] Isard W. Methods of regional analysis:An introduction to regional science[M]. Cambridge, MA:MIT Press, 1960.
[6] Chenery H. Regional analysis[M]//Chenery H, Clark P, Pinna V. The Structure and Growth of the Italian Economy. Rome:U. S. Mutual Security Agency, 1953.
[7] Moses L N. The stability of interregional trading patterns and input-output analysis[J]. American Economic Review, 1955, 45(5):803-832.
[8] Leontief W, Strout A. Multiregional input-output analysis[M]//Barna T. Structural Interdependence and Economic Development. London:Macmillan, 1963.
[9] Schaffer W, Chu K. Non-survey techniques for constructing regional interindustry models[J]. Regional Science Association, 1969, 23:83-101.
[10] Morrison W I, Smith P. Non-survey input-output techniques at the small area level:An evaluation[J]. Journal of Regional Science, 1974, 14(1):1-14.
[11] Sawyer C H, Miller R E. Experiments in regionalization of a national input-output table[J]. Environment and Planning A, 1983, 15:1501-1520.
[12] Tinbergen J. Shaping the world economy:Suggestion for an international economic policy[M]. New York:The Twentieth Century Fund, 1962.
[13] Poyhonen P. A tentative model for the volume of trade between countries[J]. Weltwirtschaftliches Archiv, 1963, 90:93-100.
[14] Aitken N D. The effect of the EEC and EFTA on European trade:A temporal cross-section analysis[J]. American Economic Review, 1973, 63(5):881-892.
[15] Sapir A. Trade benefits under the EEC generalized system of preferences[J]. European Economic Review, 1981, 15(3):339-355.
[16] Hutchinson W K. Does ease of communication increase trade?Commonality of language and bilateral trade[J]. Scottish Journal of Political Economy, 2002, 49(5):544-556.
[17] Melitz J. Language and foreign trade[J]. European Economic Review, 2008, 52(4):667-699.
[18] 行伟波,李善同.引力模型、边界效应与中国区域间贸易:基于投入产出数据的实证分析[J].国际贸易问题, 2010(10):32-41.Hang W B, Li S T. Gravity model, border effect and China's interregional trade:An empirical analysis based on input-output data[J]. Journal of International Trade, 2010(10):32-41.
[19] 刘卫东,刘红光,范晓梅,等.地区间贸易流量的产业-空间模型构建与应用[J].地理学报, 2012, 67(2):147-156.Liu W D, Liu H G, Fan X M, et al. Sector-specific spatial statistic model for estimating inter-regional trade flows:A case study of agricultural, chemical and electronic sectors in China[J]. Acta Geographica Sinica, 2012, 67(2):147-156.
[20] Bulent E, Mehmet U. A spatial regression approach to FDI in Vietinam:Province-level evidence[J]. The Singapore Economic Review, 2017, 62(2):459-481.
[21] 刘俊,张亚斌.丝绸之路经济带贸易便利化时空差异及其贸易效应-基于空间引力模型的实证研究[J].经济问题探索, 2016(10):130-137. Liu J, Zhang Y B. Spatial and temporal differences of trade facilitation and its trade effects in the Silk Road Economic Belt:An empirical study based on the spatial gravity model[J]. Inquiry into Economic Issues, 2016(10):130-137.
[22] 张靖.中国投入产出核算矩阵的编制与应用研究[D].太原:山西财经大学, 2013.Zhang J. Research on the establishment and application of input-output accounting matrix in China[D]. Taiyuan:Shanxi University of Finance and Economics, 2013.
[23] Liu W D, Li X, Liu H G, et al. Estimating inter-regional trade flows in China:A sector-specific statistical model[J]. Journal of Geographical Sciences, 2015, 25(10):1247-1263.
[24] 于洋.中国省际贸易流量再估算与区间分解[J].中国经济问题, 2013(5):100-108.Yu Y. The re-estimation and decomposition of China provincial trade flow[J]. China Economic Studies, 2013(5):100-108.
[25] Anselin L. Local indicators of spatial association-LISA[J]. Geographical Analysis, 1995, 27(2):93-95.
[26] 王周伟,崔百胜,张元庆.空间计量经济学现代模型与方法[M].北京:北京大学出版社, 2017.Wang Z W, Cui B S, Zhang Y Q. Spatial econometric modern models and methods[M]. Beijing:Peking University Press, 2017.

Funding

Funds for International Cooperation and Exchange of the National Natural Science Foundation of China (41661144023); The Strategic Priority Research Program of the Chinese Academy of Sciences (XDA19040401)
PDF(1043 KB)

591

Accesses

0

Citation

Detail

Sections
Recommended

/