Literature review and frontier direction exploration of energy finance

GONG Xu, JI Qiang, LIN Boqiang

Systems Engineering - Theory & Practice ›› 2021, Vol. 41 ›› Issue (12) : 3349-3365.

PDF(1016 KB)
PDF(1016 KB)
Systems Engineering - Theory & Practice ›› 2021, Vol. 41 ›› Issue (12) : 3349-3365. DOI: 10.12011/SETP2020-0163

Literature review and frontier direction exploration of energy finance

  • GONG Xu1,2, JI Qiang3, LIN Boqiang1,2
Author information +
History +

Abstract

With the deepening of energy commodity financialization, energy finance has become a new frontier field, which has been widely concerned by scholars in the worldwide. This paper first reviews the development of energy finance theory comprehensively, and describes the research progress of energy finance from six aspects:Driving factors of energy price, energy market modeling and forecasting, energy asset pricing and hedging, energy-commodity-financial market correlation, energy industry investment and financing, and energy corporate finance. Furthermore, this paper proposes three frontier research directions:Big data energy finance, artificial intelligence + energy finance, and energy finance and energy security. Through the combing of this paper, the current energy finance theory and empirical research are systematically elaborated, which can provide reference and guidance for promoting the development of energy finance theory.

Key words

energy finance / asset pricing / energy-commodity-financial market correlation / energy industry investment and financing / energy corporate finance

Cite this article

Download Citations
GONG Xu , JI Qiang , LIN Boqiang. Literature review and frontier direction exploration of energy finance. Systems Engineering - Theory & Practice, 2021, 41(12): 3349-3365 https://doi.org/10.12011/SETP2020-0163

References

[1] 林伯强, 黄光晓. 能源金融[M]. 2版. 北京:清华大学出版社, 2014. Lin B Q, Huang G X. Energy finance[M]. 2nd ed. Beijing:Tsinghua University Press, 2014.
[2] 陈柳钦. "钦点"能源(一)[M]. 北京:中国金融出版社, 2014. Chen L Q. "Hand-picked" energy (Part one)[M]. Beijing:China Finance Press, 2014.
[3] Hotelling H. The economics of natural resources[J]. Journal of Political Economy, 1931, 39(2):137-175.
[4] Dees S, Karadeloglou P, Kaufmann R K, et al. Modelling the world oil market:Assessment of a quarterly econometric model[J]. Energy Policy, 2007, 35(1):178-191.
[5] Kilian L. Oil price shocks:Causes and consequences[J]. Annual Review of Resource Economic, 2014, 6(1):133-154.
[6] Heath D. Macroeconomic factors in oil futures markets[J]. Management Science, 2019, 65(9):4407-4421.
[7] Fattouh B, Kilian L, Mahadeva L. The role of speculation in oil markets:What have we learned so far?[J]. Energy Journal, 2013, 34(3):7-33.
[8] Hamilton J D. Causes and consequences of the oil shock of 2007-08[J]. Brookings Papers on Economic Activity, 2009(1):215-283.
[9] Kilian L. Not all oil price shocks are alike:Disentangling demand and supply shocks in the crude oil market[J]. American Economic Review, 2009, 99(3):1053-1069.
[10] Kilian L, Murphy D P. The role of inventories and speculative trading in the global market for crude oil[J]. Journal of Applied Econometrics, 2014, 29(3):454-478.
[11] Aastveit K A, Bjørnland H C, Thorsrud L A. What drives oil prices? Emerging versus developed economies[J]. Journal of Applied Econometrics, 2015, 30(7):1013-1028.
[12] 谢楠, 龚旭, 林伯强, 等. 中国石油需求与全球石油库存对国际油价的影响研究[J]. 当代经济科学, 2018, 40(4):27-34+130, 131. Xie N, Gong X, Lin B Q, et al. Impact of China's oil demand and global oil inventory on international oil price[J]. Modern Economic Science, 2018, 40(4):27-34+130, 131.
[13] Baumeister C, Hamilton J D. Structural interpretation of vector autoregressions with incomplete identification:Revisiting the role of oil supply and demand shocks[J]. American Economic Review, 2019, 109(5):1873-1910.
[14] Kaufmann R K, Ullman B. Oil prices, speculation, and fundamentals:Interpreting causal relations among spot and futures prices[J]. Energy Economics, 2009, 31(4):550-558.
[15] Ji Q. System analysis approach for the identification of factors driving crude oil prices[J]. Computers and Industrial Engineering, 2012, 63(3):615-625.
[16] Gong X, Chen L, Lin B. Analyzing dynamic impacts of different oil shocks on oil price[J]. Energy, 2020, 198:117306.
[17] Zhang X, Lai K K, Wang S. Did speculative activities contribute to high crude oil prices during 1993 to 2008?[J]. Journal of Systems Science and Complexity, 2009, 22(4):636-646.
[18] Wen F, Xiao J, Huang C, et al. Interaction between oil and US dollar exchange rate:Nonlinear causality, time-varying influence and structural breaks in volatility[J]. Applied Economics, 2018, 50(3):319-334.
[19] 张程, 范立夫. 大宗商品价格影响与货币政策权衡——基于石油的金融属性视角[J]. 金融研究, 2017(3):72-85. Zhang C, Fan L F. Commodity price influence and monetary policy trade-offs:Based on the financial attribute of oil view[J]. Journal of Financial Research, 2017(3):72-85.
[20] Ji Q, Guo J. Oil price volatility and oil-related events:An internet concern study perspective[J]. Applied Energy, 2015, 137:256-264.
[21] Pavlidis E G, Paya I, Peel D A. Using market expectations to test for speculative bubbles in the crude oil market[J]. Journal of Money Credit & Banking, 2018, 50(5):833-856.
[22] Nick S, Thoenes S. What drives natural gas prices?-A structural VAR approach[J]. Energy Economics, 2014, 45:517-527.
[23] Ji Q, Zhang H Y, Geng J B. What drives natural gas prices in the United States?-A directed acyclic graph approach[J]. Energy Economics, 2018, 69:79-88.
[24] Hailemariam A, Smyth R. What drives volatility in natural gas prices?[J]. Energy Economics, 2019, 80:731-742.
[25] Ketterer J C. The impact of wind power generation on the electricity price in Germany[J]. Energy Economics, 2014, 44:270-280.
[26] 牟敦果, 王沛英. 中国能源价格内生性研究及货币政策选择分析[J]. 金融研究, 2017(11):81-95. Mou D G, Wang P Y. Study of endogenous energy prices and monetary policy choice in China[J]. Journal of Financial Research, 2017(11):81-95.
[27] Mosquera-López S, Nursimulu A. Drivers of electricity price dynamics:Comparative analysis of spot and futures markets[J]. Energy Policy, 2019, 126:76-87.
[28] Baumeister C, Kilian L. Forecasting the real price of oil in a changing world:A forecast combination approach[J]. Journal of Business & Economic Statistics, 2015, 33(3):338-351.
[29] Baumeister C, Korobilis D, Lee T K. Energy markets and global economic conditions[R]. NBER Working Paper No. 27001, 2020.
[30] 范贻昌, 刘波. 多维自回归模型在天然气价格预测中的应用[J]. 系统工程理论与实践, 1999, 19(11):92-96. Fan Y C, Liu B. The application of vector autoregression model on price forecasting of natural gas[J]. Systems Engineering-Theory & Practice, 1999, 19(11):92-96.
[31] Chen Y C, Rogoff K S, Rossi B. Can exchange rates forecast commodity prices?[J]. The Quarterly Journal of Economics, 2010, 125(3):1145-1194.
[32] Ziel F, Weron R. Day-ahead electricity price forecasting with high-dimensional structures:Univariate vs. multivariate modeling frameworks[J]. Energy Economics, 2018, 70:396-420.
[33] Fan X, Wang L, Li S. Predicting chaotic coal prices using a multi-layer perceptron network model[J]. Resources Policy, 2016, 50:86-92.
[34] Uniejewski B, Marcjasz G, Weron R. Understanding intraday electricity markets:Variable selection and very short-term price forecasting using LASSO[J]. International Journal of Forecasting, 2019, 35:1533-1547.
[35] 梁强, 范英, 魏一鸣. 基于PMRS的期货加权油价多步预测方法[J]. 管理科学学报, 2008, 11(6):84-90.Liang Q, Fan Y, Wei Y M. Futures-weighted oil price multi-step prediction approach on PMRS[J]. Journal of Management Sciences in China, 2008, 11(6):84-90.
[36] Sadorsky P. Modeling and forecasting petroleum futures volatility[J]. Energy Economics, 2006, 28:467-488.
[37] Kang S H, Yoon S M. Modeling and forecasting the volatility of petroleum futures prices[J]. Energy Economics, 2013, 36:354-362.
[38] Zhang Y J, Yao T, He L Y, et al. Volatility forecasting of crude oil market:Can the regime switching GARCH model beat the single-regime GARCH models?[J]. International Review of Economics & Finance, 2019, 59:302-317.
[39] Sadorsky P, McKenzie M D. Power transformation models and volatility forecasting[J]. Journal of Forecasting, 2008, 27(7):587-606.
[40] 尚永庆, 王震, 陈冬月. Hull-White模型和二叉树模型在预测油价及油价波动风险上的应用[J]. 系统工程理论与实践, 2012, 32(9):1996-2002.Shang Y Q, Wang Z, Chen D Y. Forecasting the fluctuation of oil price based on Hull-White model and binary tree model[J]. Systems Engineering-Theory & Practice, 2012, 32(9):1996-2002.
[41] Baum C F, Zerilli P. Jumps and stochastic volatility in crude oil futures prices using conditional moments of integrated volatility[J]. Energy Economics, 2016, 53:175-181.
[42] Haugom E, Langeland H, Molnár P, et al. Forecasting volatility of the U.S. oil market[J]. Journal of Banking & Finance, 2014, 47:1-14.
[43] Sévi B. Forecasting the volatility of crude oil futures using intraday data[J]. European Journal of Operational Research, 2014, 235(3):643-659.
[44] Wen F, Gong X, Cai S. Forecasting the volatility of crude oil futures using HAR-type models with structural breaks[J]. Energy Economics, 2016, 59:400-413.
[45] Gong X, Lin B. The incremental information content of investor fear gauge for volatility forecasting in the crude oil futures market[J]. Energy Economics, 2018, 74:370-386.
[46] 龚旭, 林伯强. 跳跃风险, 结构突变与原油期货价格波动预测[J]. 中国管理科学, 2018, 26(11):11-21.Gong X, Lin B Q. Jump risk, structural breaks and forecasting crude oil futures volatility[J]. Chinese Journal of Management Science, 2018, 26(11):11-21.
[47] Ma F, Liao Y, Zhang Y, et al. Harnessing jump component for crude oil volatility forecasting in the presence of extreme shocks[J]. Journal of Empirical Finance, 2019, 52:40-55.
[48] Uritskaya O Y, Uritsky V M. Predictability of price movements in deregulated electricity markets[J]. Energy Economics, 2015, 49:72-81.
[49] Ciarreta A, Muniain P, Zarraga A. Modeling and forecasting realized volatility in German-Austrian continuous intraday electricity prices[J]. Journal of Forecasting, 2017, 36(6):680-690.
[50] Baruník J, Křehlík T. Combining high frequency data with non-linear models for forecasting energy market volatility[J]. Expert Systems with Applications, 2016, 55:222-242.
[51] Cortazar G, Millard C, Ortega H, et al. Commodity price forecasts, futures prices, and pricing models[J]. Management Science, 2019, 65(9):4141-4155.
[52] 马超群, 赵新伟. 亚太LNG市场双挂钩远期合约定价研究[J]. 系统工程理论与实践, 2018, 38(6):1371-1386.Ma C Q, Zhao X W. Study on Asia-Pacific LNG forward pricing based on crude oil and natural gas prices[J]. Systems Engineering-Theory & Practice, 2018, 38(6):1371-1386.
[53] Bejbl J, Bemš J, Králík T, et al. New approach to brown coal pricing using internal rate of return methodology[J]. Applied Energy, 2014, 133:289-297.
[54] Trolle A B, Schwartz E S. Unspanned stochastic volatility and the pricing of commodity derivatives[J]. Review of Financial Studies, 2009, 22(11):4423-4461.
[55] Khalfaoui R, Boutahar M, Boubaker H. Analyzing volatility spillovers and hedging between oil and stock markets:Evidence from wavelet analysis[J]. Energy Economics, 2015, 49:540-549.
[56] Boubaker H, Raza S A. A wavelet analysis of mean and volatility spillovers between oil and BRICS stock markets[J]. Energy Economics, 2017, 64:105-117.
[57] Ghoddusi H, Emamzadehfard S. Optimal hedging in the US natural gas market:The effect of maturity and cointegration[J]. Energy Economics, 2017, 63:92-105.
[58] Füss R, Mahringer S, Prokopczuk M. Electricity derivatives pricing with forward-looking information[J]. Journal of Economic Dynamics and Control, 2015, 58:34-57.
[59] 谭忠富, 蒲雷, 吴静, 等. 基于负荷率差别定价的分时输配电价优化模型[J]. 系统工程理论与实践, 2019, 39(11):2945-2952.Tan Z F, Pu L, Wu J, et al. Time-of-use transmission and distribution price optimization model based on differential loading rate[J]. Systems Engineering-Theory & Practice, 2019, 39(11):2945-2952.
[60] Adelman D, Uçkun C. Dynamic electricity pricing to smart homes[J]. Operations Research, 2019, 67(6):1520-1542.
[61] Tegnér M, Ernstsen R R, Skajaa A, et al. Risk-minimisation in electricity markets:Fixed price, unknown consumption[J]. Energy Economics, 2017, 68:423-439.
[62] Diebold F X, Yilmaz K. Better to give than to receive:Predictive directional measurement of volatility spillovers[J]. International Journal of Forecasting, 2012, 28(1):57-66.
[63] 魏巍贤, 林伯强. 国内外石油价格波动性及其互动关系[J]. 经济研究, 2007(12):130-141. Wei W X, Lin B Q. International and domestic and foreign oil price volatilities and its interrelationship[J]. Economic Research Journal, 2007(12):130-141.
[64] Hamao Y, Masulis R W, Ng V. Correlations in price changes and volatility across international stock markets[J]. Review of Financial Studies, 1990, 3(2):281-307.
[65] 余炜彬, 范英, 魏一鸣. 基于极值理论的原油市场价格风险VaR的研究[J]. 系统工程理论与实践, 2007, 27(8):14-22.Yu W B, Fan Y, Wei Y M. Price risk in crude oil markets:A VaR approach of EVT[J]. Systems Engineering-Theory & Practice, 2007, 27(8):14-22.
[66] Liu T, Gong X. Analyzing time-varying volatility spillovers between the crude oil markets using a new method[J]. Energy Economics, 2020, 87:104711.
[67] Geng J B, Ji Q, Fan Y. The relationship between regional natural gas markets and crude oil markets from a multi-scale nonlinear Granger causality perspective[J]. Energy Economics, 2017, 67:98-110.
[68] Xue Y, Huang Y. Study on the price co-movement among the Asia Pacific, European and Chinese coal markets-Based on the empirical analysis of MS-VEC model[J]. Applied Economics, 2017, 49(7):693-701.
[69] Batten J A, Brzeszczynski J, Ciner C, et al. Price and volatility spillovers across the international steam coal market[J]. Energy Economics, 2019, 77:119-138.
[70] Ciarreta A, Zarraga A. Analysis of mean and volatility price transmissions in the MIBEL and EPEX electricity spot markets[J]. Energy Journal, 2015, 36(4):41-60.
[71] 马超群, 佘升翔, 陈彦玲, 等. 中国上海燃料油期货市场信息溢出研究[J]. 管理科学学报, 2009(3):96-105.Ma C Q, She S X, Chen Y L, et al. Information spillovers towards fuel-oil futures market in Shanghai[J]. Journal of Management Sciences in China, 2009(3):96-105.
[72] Ramberg D J, Parsons J E. The weak tie between natural gas and oil prices[J]. Energy Journal, 2012, 33(2):13-35.
[73] Bunn D, Chevallier J, Le Pen Y, et al. Fundamental and financial influences on the co-movement of oil and gas prices[J]. Energy Journal, 2017, 38(2):201-228.
[74] Trujillo-Barrera A, Mallory M, Garcia P. Volatility spillovers in US crude oil, ethanol, and corn futures markets[J]. Journal of Agricultural and Resource Economics, 2012, 37(2):247-262.
[75] Nazlioglu S, Erdem C, Soytas U. Volatility spillover between oil and agricultural commodity markets[J]. Energy Economics, 2013, 36:658-665.
[76] Mensi W, Tiwari A, Bouri E, et al. The dependence structure across oil, wheat, and corn:A wavelet-based copula approach using implied volatility indexes[J]. Energy Economics, 2017, 66:122-139.
[77] Reboredo J C, Ugolini A. The impact of downward/upward oil price movements on metal prices[J]. Resources Policy, 2016, 49:129-141.
[78] Ji Q, Fan Y. How does oil price volatility affect non-energy commodity markets?[J]. Applied Energy, 2012, 89(1):273-280.
[79] Kang S H, McIver R, Yoon S M. Dynamic spillover effects among crude oil, precious metal, and agricultural commodity futures markets[J]. Energy Economics, 2017, 62:19-32.
[80] 张跃军, 魏一鸣. 化石能源市场对国际碳市场的动态影响实证研究[J]. 管理评论, 2010(6):34-41.Zhang Y J, Wei Y M. Interpreting the complex impact of fossil fuel markets on the EU ETS futures markets:An empirical evidence[J]. Management Review, 2010(6):34-41.
[81] Zhang Y, Sun Y. The dynamic volatility spillover between European carbon trading market and fossil energy market[J]. Journal of Cleaner Production, 2016, 112:2654-2663.
[82] Green R, Larsson K, Lunina V, et al. Cross-commodity news transmission and volatility spillovers in the German energy markets[J]. Journal of Banking & Finance, 2018, 95:231-243.
[83] Kilian L, Park C. The impact of oil price shocks on the US stock market[J]. International Economic Review, 2009, 50(4):1267-1287.
[84] Degiannakis S, Filis G, Arora V. Oil prices and stock markets:A review of the theory and empirical evidence[J]. Energy Journal, 2018, 39(5):85-130.
[85] 金洪飞, 金荦. 国际石油价格对中国股票市场的影响——基于行业数据的经验分析[J]. 金融研究, 2010(2):177-191. Jin H F, Jin L. The impact of international oil prices on China's stock market-An empirical analysis based on industry data[J]. Journal of Financial Research, 2010(2):177-191.
[86] 郭国峰, 郑召锋. 国际能源价格波动对中国股市的影响——基于计量模型的实证检验[J]. 中国工业经济, 2011(6):26-35. Guo G F, Zheng S F. Effect of China's stock market to the volatility of international energy-Based on empirical econometric model[J]. China Industrial Economics, 2011(6):26-35.
[87] Du L, He Y. Extreme risk spillovers between crude oil and stock markets[J]. Energy Economics, 2015, 51:455-465.
[88] Mensi W, Hammoudeh S, Shahzad S J H, et al. Modeling systemic risk and dependence structure between oil and stock markets using a variational mode decomposition-based copula method[J]. Journal of Banking & Finance, 2017, 75:258-279.
[89] Al-Yahyaee K H, Mensi W, Sensoy A, et al. Energy, precious metals, and GCC stock markets:Is there any risk spillover?[J]. Pacific-Basin Finance Journal, 2019, 56:45-70.
[90] 朱小能, 袁经发. 去伪存真:油价趋势与股票市场——来自"一带一路" 35国的经验证据[J]. 金融研究, 2019(9):131-150.Zhu X N, Yuan J F. Oil price trends and the stock market:Empirical evidence from 35 countries along "the Belt and Road"[J]. Journal of Financial Research, 2019(9):131-150.
[91] 谢飞, 韩立岩. 对冲基金与国际资产价格的波动性传递[J]. 管理科学学报, 2010(11):94-103.Xie F, Han L Y. Volatility transfer among hedge funds and international asset prices[J]. Journal of Management Sciences in China, 2010(11):94-103.
[92] 姬强, 刘炳越, 范英. 国际油气价格与汇率动态相依关系研究:基于一种新的时变最优copula模型[J]. 中国管理科学, 2016, 24(10):1-9.Ji Q, Liu B Y, Fan Y. Dynamic dependence between international oil, natural gas and exchange market based on a new time-varying optimal copula model[J]. Chinese Journal of Management Science, 2016, 24(10):1-9.
[93] Yang Z, Zhou Y. Quantitative easing and volatility spillovers across countries and asset classes[J]. Management Science, 2017, 63(2):333-354.
[94] Ji Q, Bouri E, Roubaud D, et al. Information interdependence among energy, cryptocurrency and major commodity markets[J]. Energy Economics, 2019, 81:10420-1055.
[95] Enzensberger N, Fichtner W, Rentz O. Financing renewable energy projects via closed-end funds-A German case study[J]. Renewable Energy, 2003, 28(13):2023-2036.
[96] Tang A, Chiara N, Taylor J E. Financing renewable energy infrastructure:Formulation, pricing and impact of a carbon revenue bond[J]. Energy Policy, 2012, 45:691-703.
[97] Ng T H, Tao J Y. Bond financing for renewable energy in Asia[J]. Energy Policy, 2016, 95:509-517.
[98] Zhang M M, Zhou P, Zhou D Q. A real options model for renewable energy investment with application to solar photovoltaic power generation in China[J]. Energy Economics, 2016, 59:213-226.
[99] Kök G, Shang K, Yücel S. Impact of electricity pricing policies on renewable energy investments and carbon emissions[J]. Management Science, 2018, 64(1):131-148.
[100] Ragosa G, Warren P. Unpacking the determinants of cross-border private investment in renewable energy in developing countries[J]. Journal of Cleaner Production, 2019, 235:854-865.
[101] Zeng S, Jiang C, Ma C, et al. Investment efficiency of the new energy industry in China[J]. Energy Economics, 2018, 70:536-544.
[102] 李力, 朱磊, 范英. 可再生能源配额机制下电力投资最优序贯决策模型[J]. 管理评论, 2019(9):37-46.Li L, Zhu L, Fan Y. Optimum sequential investments model on renewable energy power investments under renewable portfolio standards[J]. Management Review, 2019(9):37-46.
[103] Berrada A, Loudiyi K, Zorkani I. Profitability, risk, and financial modeling of energy storage in residential and large scale applications[J]. Energy, 2017, 119:94-109.
[104] Miller L, Carriveau R. A review of energy storage financing-Learning from and partnering with the renewable energy industry[J]. Journal of Energy Storage, 2018, 19:311-319.
[105] 黄超, 达庆利. 电价不确定环境下发电商的最优投资时机及其概率分析[J]. 系统工程理论与实践, 2007, 27(6):107-112.Huang C, Da Q L. The optimal timing and probability studying of generation firm investment under power price uncertainty[J]. Systems Engineering-Theory & Practice, 2007, 27(6):107-112.
[106] Barroco J, Herrera M. Clearing barriers to project finance for renewable energy in developing countries:A philippines case study[J]. Energy Policy, 2019, 135:111008.
[107] 王素凤, 杨善林, 彭张林. 面向多重不确定性的发电商碳减排投资研究[J]. 管理科学学报, 2016, 19(2):31-41.Wang S F, Yang S L, Peng Z L. Research on the power producer's carbon abatement investment in view of multiple uncertainties[J]. Journal of Management Sciences in China, 2016, 19(2):31-41.
[108] 王怀芳, 袁国良. 要约收购下的股东权益保护——中国石化要约收购下属子公司案例研究[J]. 管理世界, 2007(2):120-128+133.Wang H F, Yuan G L. The protection of shareholders' rights and interests under the tender offer-A case study of Sinopec's tender offer of subsidiary companies[J]. Management World, 2007(2):120-128+133.
[109] Wan K M, Wong K F. Economic impact of political barriers to cross-border acquisitions:An empirical study of CNOOC's unsuccessful takeover of Unoca[J]. Journal of Corporate Finance, 2009, 15:447-468.
[110] Bakke T E, Mahmudi H, Fernando C S, et al. The causal effect of option pay on corporate risk management[J]. Journal of Financial Economics, 2016, 120:623-643.
[111] Atanasova C, Schwartz E S. Stranded fossil fuel reserves and firm value[R]. NBER Working Paper No. 26497, 2019.
[112] Gilje E P, Taillard J P. Does hedging affect firm value? Evidence from a natural experiment[J]. Review of Financial Studies, 2017, 30(12):4083-4132.
[113] Gilje E P, Taillard J P. Do Private firms invest differently than public firms? Taking cues from the natural gas industry[J]. Journal of Finance, 2016, 71(4):1733-1778.
[114] Gilje E P, Loutskina E, Murphy D. Drilling and debt[J] Journal of Finance, 2020, 75(3):1287-1325.
[115] Doshi H, Kumar P, Yerramilli V. Uncertainty, capital investment, and risk management[J]. Management Science, 2018, 64(12):5769-5786.
[116] David A. Exploration activity, long-run decisions, and the risk premium in energy futures[J]. Review of Financial Studies, 2019, 32(4):1536-1572.
[117] Michalak A, Nawrocki T L. Comparative analysis of the cost of equity of hard coal mining enterprises an international perspective[J]. Gospodarka Surowcami Mineralnymi-Mineral Resources Management, 2015, 31:49-71.
[118] Jonek-Kowalska I. How do turbulent sectoral conditions sector influence the value of coal mining enterprises? Perspectives from the Central-Eastern Europe coal mining industry[J]. Resources Policy, 2018, 55:103-112.
[119] Thiam D R. An energy pricing scheme for the diffusion of decentralized renewable technology investment in developing countries[J]. Energy Policy, 2011, 39:4284-4297.
[120] Shrimali G, Nelson D, Goel S, et al. Renewable deployment in India:Financing costs and implications for policy[J]. Energy Policy, 2013, 62:28-43.
[121] Gupta K. Do economic and societal factors influence the financial performance of alternative energy firms[J]. Energy Economics, 2017, 65:172-182.
[122] 刘正阳, 王金鑫, 乔晗, 等. 商业模式对企业绩效的影响探究——基于新能源上市企业数据[J]. 管理评论, 2019, 31(7):264-273. Liu Z Y, Wang J X, Qiao H, et al. The influence of business model on enterprise performance:Based on the data of listed new energy enterprises[J]. Management Review, 2019, 31(7):264-273.
[123] 马秋君, 彭明雪. 我国电力行业上市公司资本结构特征及优化分析[J]. 经济与管理研究, 2007(10):57-62. Ma Q J, Peng M X. The capital structure characteristics and optimization analysis of listed companies in China's electric power industry[J]. Research on Economics and Management, 2007(10):57-62.
[124] 李永来. 市场化改革与电力行业效率:基于DEA的电力行业上市公司分析[J]. 当代经济科学, 2009(1):65-70+132.Li Y L. Market-oriented reform and electric industry efficiency:Based on the DEA research of listed company[J]. Modern Economic Science, 2009(1):65-70+132.
[125] Reinartz S J, Schmid T. Production flexibility, product markets, and capital structure decisions[J]. Review of Financial Studies, 2016, 29(6):1501-1548.
[126] 郭剑锋, 姬强. 大数据时代的能源金融[J]. 中国科学院院刊, 2014(6):44-45. Guo J F, Ji Q. Energy finance of big data era[J]. Bulletin of Chinese Academy of Sciences, 2014(6):44-45.
[127] Elshendy M, Colladon A F, Battistoni E, et al. Using four different online media sources to forecast the crude oil price[J]. Journal of Information Science, 2018, 44(3):408-421.
[128] Zhao L T, Liu L N, Wang Z J, et al. Forecasting oil price volatility in the era of big data:A text mining for VaR approach[J]. Sustainability, 2019, 11(14):3892.
[129] Li X, Shang W, Wang S. Text-based crude oil price forecasting:A deep learning approach[J]. International Journal of Forecasting, 2019, 35(4):1548-1560.
[130] Moshiri S, Foroutan F. Forecasting nonlinear crude oil futures prices[J]. Energy Journal, 2006, 27(4):81-95.
[131] 王珏, 齐琛, 李明芳. 基于SSA-ELM的大宗商品价格预测研究[J]. 系统工程理论与实践, 2017, 37(8):2004-2014. Wang J, Qi C, Li M F. Prediction of commodity prices based on SSA-ELM[J]. Systems Engineering-Theory & Practice, 2017, 37(8):2004-2014.
[132] Cen Z, Wang J. Crude oil price prediction model with long short term memory deep learning based on prior knowledge data transfer[J]. Energy, 2019, 169:160-171.
[133] Lago J, De Ridder F, Vrancx P, et al. Forecasting day-ahead electricity prices in Europe:The importance of considering market integration[J]. Applied Energy, 2018, 211:890-903.
[134] Peng L, Liu S, Liu R, et al. Effective long short-term memory with differential evolution algorithm for electricity price prediction[J]. Energy, 2018, 162:1301-1314.
[135] Zhang X, Wang J, Gao Y. A hybrid short-term electricity price forecasting framework:Cuckoo search-based feature selection with singular spectrum analysis and SVM[J]. Energy Economics, 2019, 81:899-913.
[136] Belyi A V. Why is the oil price not about equilibrium?:An economic sociology account of petroleum markets[J]. Energy Policy, 2016, 96:45-49.
[137] Lobova S V, Ragulina J V, Bogoviz A V, et al. Energy security performance:A dataset on the member countries of the Commonwealth of Independent States, 2000-2014[J]. Data in Brief, 2019, 26:104450.
[138] Ji Q, Zhang H Y, Zhang D. The impact of OPEC on East Asian oil import security:A multidimensional analysis[J]. Energy Policy, 2019, 126:99-107.

Funding

National Natural Science Foundation of China (72071166, 71701176, 72022020); Fundamental Research Funds for the Central Universities (2072019029)
PDF(1016 KB)

1127

Accesses

0

Citation

Detail

Sections
Recommended

/