Construction of accumulative time-delay nonlinear ATNDGM(1, N) model and its application

YE Lili, XIE Naiming, LUO Dang

Systems Engineering - Theory & Practice ›› 2021, Vol. 41 ›› Issue (9) : 2414-2427.

PDF(801 KB)
PDF(801 KB)
Systems Engineering - Theory & Practice ›› 2021, Vol. 41 ›› Issue (9) : 2414-2427. DOI: 10.12011/SETP2020-0028

Construction of accumulative time-delay nonlinear ATNDGM(1, N) model and its application

  • YE Lili1, XIE Naiming1, LUO Dang2
Author information +
History +

Abstract

As to the problem of prediction modelling for multivariable time-delay and nonlinear systems, a new multivariable grey prediction model, called the accumulative time-delay nonlinear multivariable discrete grey model (ATNDGM(1, N)), is proposed by adding time-delay driving term and power exponent, and its parameters calculation method is given. The accumulative time-delay grey incidence model is put forward to determine the driving factors and time-delay parameters, and the relationship between the time-delay period and the time-delay weight is discussed. In addition, the optimal power exponent is determined by particle swarm optimization. It is proved to be that the DGM(1, N)、DGPM(1, N) and ATDGM(1, N) models are all the special cases of ATNDGM(1, N) model, and the affections of multiplication transformation caused to this model is studied. The numerical examples are carried out to assess the modeling feasibility in comparison with other models. Finally, the ATNDGM(1, N) model is employed to predict the agricultural output value in Henan Province. The results show that this model has high fitting and forecasting accuracy, which can effectively deal with the prediction problem of small sample multivariable systems with time-delay and nonlinear characteristics.

Key words

grey ATNDGM(1, N) model / accumulative effect / time-delay / nonlinearity / agricultural output value

Cite this article

Download Citations
YE Lili , XIE Naiming , LUO Dang. Construction of accumulative time-delay nonlinear ATNDGM(1, N) model and its application. Systems Engineering - Theory & Practice, 2021, 41(9): 2414-2427 https://doi.org/10.12011/SETP2020-0028

References

[1] Matsumura K, Gaitan C F, Sugimoto K, et al. Maize yield forecasting by linear regression and artificial neural networks in Jilin, China[J]. Journal of Agricultural Science, 2015, 153(3):399-410.
[2] 张洁瑕, 郝晋珉, 胡吉敏. 基于自适应ARMA模型的区域农业总产值构成研究与应用[J]. 农业工程学报, 2008, 24(8):84-88.Zhang J X, Hao J M, Hu J M. Composition of the gross output value of regional agriculture based on adaptive autoregressive moving-average model and its application[J]. Transactions of the CSAE, 2008, 24(8):84-88.
[3] Han S Z, Pan W T, Zhou Y Y, et al. Construct the prediction model for China agricultural output value based on the optimization neural network of fruit fly optimization algorithm[J]. Future Generation Computer Systems, 2018, 86:663-669.
[4] Xiong T, Li C G, Bao Y K, et al. A combination method for interval forecasting of agricultural commodity futures prices[J]. Knowledge-Based Systems, 2015, 77(5):92-102.
[5] Ou S L. Forecasting agricultural output with an improved grey forecasting model based on the genetic algorithm[J]. Computers and Electronics in Agriculture, 2012, 85(6):33-39.
[6] Li D C, Chang C J, Chen C C, et al. Forecasting short-term electricity consumption using the adaptive grey-based approach-An Asian case[J]. Omega, 2012, 40(6):767-773.
[7] Wei B L, Xie N M, Hu A Q. Optimal solution for novel grey polynomial prediction model[J]. Applied Mathematical Modelling, 2018, 62:717-727.
[8] 罗党, 韦保磊. 一类离散灰色预测模型的统一处理方法及应用[J]. 系统工程理论与实践, 2019, 39(2):451-462.Luo D, Wei B L. A unified treatment approach for a class of discrete grey forecasting models and its application[J]. Systems Engineering-Theory & Practice, 2019, 39(2):451-462.
[9] 肖新平, 宋中民, 李峰. 灰技术基础及其应用[M]. 北京:科学出版社, 2005:117-122.Xiao X P, Song Z M, Li F. Grey technology and its application[M]. Beijing:Science Press, 2005:117-122.
[10] 熊萍萍, 党耀国, 束慧. MGM(1, m)模型的特性研究[J]. 控制与决策, 2012, 27(3):389-393.Xiong P P, Dang Y G, Shu H. Research on characteristics of MGM(1, m) model[J]. Control and Decision, 2012, 27(3):389-393.
[11] He Z, Shen Y, Li J B. et al. Regularized multivariable grey model for stable grey coefficients estimation[J]. Expert Systems with Applications, 2015, 42(4):1806-1815.
[12] Hsu L C. Forecasting the output of integrated circuit industry using genetic algorithm based multivariable grey optimization models[J]. Expert Systems with Applications, 2009, 36(4):7898-7903.
[13] Guo H, Xiao X P, Forrest J. A research on a comprehensive adaptive grey prediction model CAGM(1, N)[J]. Applied Mathematics and Computation, 2013, 225:216-227.
[14] Zeng B, Li C. Improved multi-variable grey forecasting model with a dynamic background-value coefficient and its application[J]. Computers & Industrial Engineering, 2018, 118:278-290.
[15] Wu L F, Zhang Z Y. Grey multivariable convolution model with new information priority accumulation[J]. Applied Mathematical Modelling, 2018, 62:595-604.
[16] Ma X, Xie M, Wu W Q, et al. The novel fractional discrete multivariate grey system model and its applications[J]. Applied Mathematical Modelling, 2019, 70:402-424.
[17] 仇伟杰, 刘思峰. GM(1, N)模型的离散化结构解[J]. 系统工程与电子技术, 2006, 28(11):1679-1681.Qiu W J, Liu S F. Dispersed structure solve of model GM(1, N)[J]. Systems Engineering and Electronics, 2006, 28(11):1679-1681.
[18] 谢乃明, 刘思峰. 多变量离散灰色模型及其性质[J]. 系统工程理论与实践, 2008, 28(6):143-150.Xie N M, Liu S F. Research on the discrete grey model of multi-variables and its properties[J]. Systems Engineering-Theory & Practice, 2008, 28(6):143-150.
[19] 周伟, 方志耕. 非线性优化GM(1, N)模型及其应用研究[J]. 系统工程与电子技术, 2010, 32(2):317-320.Zhou W, Fang Z G. Nonlinear optimization method of gray GM(1, N) model and application[J]. Systems Engineering and Electronics, 2010, 32(2):317-320.
[20] 王正新. 灰色多变量GM(1, N)幂模型及其应用[J]. 系统工程理论与实践, 2014, 34(9):2357-2363.Wang Z X. Grey multivariable power model GM(1, N) and its application[J]. Systems Engineering-Theory & Practice, 2014, 34(9):2357-2363.
[21] 丁松, 党耀国, 徐宁, 等. 多变量离散灰色幂模型构建及其优化研究[J]. 系统工程与电子技术, 2018, 40(6):1302-1309.Ding S, Dang Y G, Xu N, et al. Construction and optimization of a multi-variables discrete grey power model[J]. Systems Engineering and Electronics, 2018, 40(6):1302-1309.
[22] 黄继. 灰色多变量GM(1, N|τ,r)模型及其粒子群优化算法[J]. 系统工程理论与实践, 2009, 29(10):145-151.Huang J. Grey GM(1, N|τ,r) model and its particle swarm optimization algorithm[J]. Systems Engineering -Theory & Practice, 2009, 29(10):145-151.
[23] 毛树华, 高明运, 肖新平. 分数阶累加时滞GM(1, N, τ)模型及其应用[J]. 系统工程理论与实践, 2015, 35(2):430-436.Mao S H, Gao M Y, Xiao X P. Fractional order accumulation time-lag GM(1, N, τ) model and its application[J]. Systems Engineering-Theory & Practice, 2015, 35(2):430-436.
[24] 张可, 曲品品, 张隐桃. 时滞多变量离散灰色模型及其应用[J]. 系统工程理论与实践, 2015, 35(8):2092-2103.Zhang K, Qu P P, Zhang Y T. Delay multi-variables discrete grey model and its application[J]. Systems Engineering-Theory & Practice, 2015, 35(8):2092-2103.
[25] 党耀国, 魏龙, 丁松. 基于驱动信息控制项的灰色多变量离散时滞模型及其应用[J]. 控制与决策, 2017, 32(9):1672-1680.Dang Y G, Wei L, Ding S. Delay multi-variables discrete grey model based on the driving-information control and its application[J]. Control and Decision, 2017, 32(9):1672-1680.
[26] 王正新. 多变量时滞GM(1, N)模型及其应用[J]. 控制与决策, 2015, 30(12):2298-2304.Wang Z X. Multivariable time-delayed GM(1, N) model and its application[J]. Control and Decision, 2015, 30(12):2298-2304.
[27] 丁松, 党耀国, 徐宁, 等. 基于时滞效应的多变量离散灰色预测模型[J]. 控制与决策, 2017, 32(11):1997-2004.Ding S, Dang Y G, Xu N, et al. Multi-variable time-delayed discrete grey model[J]. Control and Decision, 2017, 32(11):1997-2004.
[28] Liu S F, Yang Y J, Forrest J. Grey data analysis:Methods, models and applications[M]. Springer:Singapore, 2017:60, 61, 141-181.
[29] 张贤达. 矩阵分析与应用[M]. 2版. 北京:清华大学出版社, 2013:61-67.Zhang X D. Matrix analysis and applications[M]. 2nd ed. Beijing:Tsinghua University Press, 2013:61-67.
[30] 李翀,谢秀萍.含时变时滞函数的GM(1, 1|τi)模型及其应用[J].系统工程理论与实践, 2019, 39(6):1535-1549.Li C, Xie X P. GM(1, 1|τi) prediction model with time-varying delay function and its application[J]. Systems Engineering-Theory & Practice, 2019, 39(6):1535-1549.

Funding

National Natural Science Foundation of China (71671090, 51979106); Qinglan Project for Excellent Youth or Middle-Aged Academic Leaders in Jiangsu Province of China
PDF(801 KB)

Accesses

Citation

Detail

Sections
Recommended

/