Pedestrian data mining with object tracking and trajectory clustering

SAI Bin, CAO Ziqiang, TAN Yuejin, Lü Xin

Systems Engineering - Theory & Practice ›› 2021, Vol. 41 ›› Issue (1) : 231-239.

PDF(1004 KB)
PDF(1004 KB)
Systems Engineering - Theory & Practice ›› 2021, Vol. 41 ›› Issue (1) : 231-239. DOI: 10.12011/SETP2019-2960

Pedestrian data mining with object tracking and trajectory clustering

  • SAI Bin, CAO Ziqiang, TAN Yuejin, Lü Xin
Author information +
History +

Abstract

With the Internet of Things, big data, artificial intelligence making breakthroughs in the field of security, public video monitoring systems have developed quickly in recent years. The equipment generates massive amount of unstructured data, through analysis and research on pedestrian trajectory of video data, it can be found that the hidden behavior patterns contained which have an important research value. The article uses the multiple object tracking algorithm based on object detection to extract and describe the pedestrian movement trajectory in the surveillance video of subway station and mall exits, and then analyzed the trajectory pattern of pedestrians on the basis of trajectory. Aiming at the characteristics of pedestrian trajectory, a trajectory clustering method based on trajectory similarity was designed and implemented on the basis of point density clustering algorithm. The results showed that the method can effectively extract pedestrian trajectories, and extract trajectory patterns from large types of trajectory data.

Key words

object detection / multiple object tracking / trajectory clustering / trajectory pattern / crowd behavior

Cite this article

Download Citations
SAI Bin , CAO Ziqiang , TAN Yuejin , Lü Xin. Pedestrian data mining with object tracking and trajectory clustering. Systems Engineering - Theory & Practice, 2021, 41(1): 231-239 https://doi.org/10.12011/SETP2019-2960

References

[1] EM-DAT. The international disaster database[EB/OL]. 2012. https://www.emdat.be/.
[2] 吕欣.大数据技术在应急救援领域的应用及展望[J].中国计算机学会通讯, 2018, 14:56-62.Lü X. Application and prospect of big data technology in emergency rescue field[J]. Communications of the CCF, 2018, 14:56-62.
[3] Bewley A, Ge Z, Ott L, et al. Simple online and realtime tracking[C]//2016 IEEE International Conference on Image Processing (ICIP), 2016:3464-3468.
[4] Redmon J, Divvala S, Girshick R, et al. You only look once:Unified, real-time object detection[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016:779-788.
[5] Girshick R. Fast R-CNN[C]//Proceedings of the IEEE International Conference on Computer Vision, 2015:1440-1448.
[6] 刘晓冬,苏光大.一种可视化智能户外监控系统[J].中国图象图形学报:A辑, 2000, 5(12):1024-1029. Liu X D, Su G D. A visual intelligent outdoor surveillance system[J]. Journal of Image and Graphics:A, 2000, 5(12):1024-1029.
[7] 万琴,王耀南.一种多运动目标检测,跟踪方法研究与实现[J].计算机应用研究, 2007, 24(1):199-202. Wan Q, Wang Y N. Research and implementation of detecting and tracking multiple moving objects method[J]. Application Research of Computers, 2007, 24(1):199-202.
[8] Nikouei S Y, Chen Y, Faughnan T R. Smart surveillance as an edge service for real-time human detection and tracking[C]//2018 IEEE/ACM Symposium on Edge Computing (SEC), 2018:336-337.
[9] Barbosa H, Barthelemy M, Ghoshal G, et al. Human mobility:Models and applications[J]. Physics Reports, 2018, 734:1-74.
[10] Yan X Y, Wang W X, Gao Z Y, et al. Universal model of individual and population mobility on diverse spatial scales[J]. Nature Communications, 2017, 8(1):1639.
[11] Henderson L. The statistics of crowd fluids[J]. Nature, 1971, 229(5284):381-383.
[12] Henderson L, Lyons D. Sexual differences in human crowd motion[J]. Nature, 1972, 240(5380):353-355.
[13] Henderson L F. On the fluid mechanics of human crowd motion[J]. Transportation Research, 1974, 8(6):509-515.
[14] Henderson L, Jenkins D. Response of pedestrians to traffic challenge[J]. Transportation Research, 1974, 8(1):71-74.
[15] Helbing D. A fluid dynamic model for the movement of pedestrians[J]. arXiv preprint cond-mat/9805213, 1998.
[16] Helbing D. Interrelations between stochastic equations for systems with pair interactions[J]. Physica A:Statistical Mechanics and its Applications, 1992, 181(1-2):29-52.
[17] Johansson A, Helbing D, Shukla P K. Specification of the social force pedestrian model by evolutionary adjustment to video tracking data[J]. Advances in Complex Systems, 2007, 10(Supp2):271-288.
[18] Frank G A, Dorso C O. Room evacuation in the presence of an obstacle[J]. Physica A:Statistical Mechanics and its Applications, 2011, 390(11):2135-2145.
[19] Moussaïd M, Helbing D, Theraulaz G. How simple rules determine pedestrian behavior and crowd disasters[J]. Proceedings of the National Academy of Sciences, 2011, 108(17):6884-6888.
[20] Turner A, Penn A. Encoding natural movement as an agent-based system:An investigation into human pedestrian behaviour in the built environment[J]. Environment and Planning B:Planning and Design, 2002, 29(4):473-490.
[21] Batty M. Predicting where we walk[J]. Nature, 1997, 388(6637):19-20.
[22] Porter E, Hamdar S H, Daamen W. Pedestrian dynamics at transit stations:An integrated pedestrian flow modeling approach[J]. Transportmetrica A:Transport Science, 2018, 14(5-6):468-483.
[23] 韩家炜,坎伯.数据挖掘:概念与技术[M]. 2版.北京:机械工业出版社, 2012.
[24] 吉根林,赵斌.时空轨迹大数据模式挖掘研究进展[J].数据采集与处理, 2015, 30(1):47-58. Ji G L, Zhao B. Research progress in pattern mining for big spatio-temporal trajectories[J]. Journal of Data Acquisition and Processing, 2015, 30(1):47-58.
[25] Redmon J, Farhadi A. Yolov3:An incremental improvement[J]. arXiv Preprint arXiv:1804.02767, 2018.
[26] Wojke N, Bewley A, Paulus D. Simple online and realtime tracking with a deep association metric[C]//2017 IEEE International Conference on Image Processing (ICIP), 2017:3645-3649.
[27] Murça M C R, Hansman R J, Li L, et al. Flight trajectory data analytics for characterization of air traffic flows:A comparative analysis of terminal area operations between New York, Hong Kong and Sao Paulo[J]. Transportation Research Part C:Emerging Technologies, 2018, 97:324-347.
[28] Redmon J, Farhadi A. YOLO9000:Better, faster, stronger[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017:6517-6525. https://doi.org/10.1109/CVPR.2017.690
[29] Chen X, Fang H, Lin T Y, et al. Microsoft coco captions:Data collection and evaluation server[J]. arXiv Preprint arXiv:1504.00325, 2015.
[30] 康凯.视频监控轨迹数据模式学习及行为分析[D].北京:北京交通大学, 2014.Kang K. Motion pattern study and analysis from video monitoring trajectory[D]. Beijing:Beijing Jiaotong University, 2014.
[31] Lee J G, Han J, Whang K Y. Trajectory clustering:A partition-and-group framework[C]//Proceedings of the 2007 ACM SIGMOD International Conference on Management of Data, 2007:593-604.

Funding

National Natural Science Foundation of China (71771213, 91846301, 71790615, 71774168); Science and Technology Program of Hunan (2017RS3040, 2018JJ1034)
PDF(1004 KB)

929

Accesses

0

Citation

Detail

Sections
Recommended

/