A new option pricing method: Based on the perspective of sub-mixed fractional Brownian motion

YU Mei, CHENG Zhiyong, DENG Jun, WANG Shouyang

Systems Engineering - Theory & Practice ›› 2021, Vol. 41 ›› Issue (11) : 2761-2776.

PDF(882 KB)
PDF(882 KB)
Systems Engineering - Theory & Practice ›› 2021, Vol. 41 ›› Issue (11) : 2761-2776. DOI: 10.12011/SETP2019-2880

A new option pricing method: Based on the perspective of sub-mixed fractional Brownian motion

  • YU Mei1, CHENG Zhiyong1, DENG Jun1, WANG Shouyang2
Author information +
History +

Abstract

To capture the "leptokurtosis and fat-tail", the long memory, and other fractal features of financial asset prices, in this paper, we use the time-varying sub-mixed fractional Brownian motion with GARCH structure to describe the dynamic change of risk asset price, besides, the martingale pricing theory is used to obtain the closed form of option price, which extends the traditional BS and fractional Brownian motion model. The US S&P500 Index Option, Korea KOSPI200 Index Option, China SSE 50 ETF Option, China Hong Kong Hang Seng Index Option, China Taiwan Index Option, and India NIFTY Index Option are used to conduct the empirical studies. Our finding shows that the time-varying sub-mixed fractional Brownian motion with GARCH structure has higher pricing accuracy than to BS and sub-mixed fractional Brownian motion model, which has particularly prominent pricing performance in the emerging markets. This research results have important theoretical and practical implication in several aspects, including the reasonable pricing of option, risk management and investment decision-making, and it also contributes to the development of multi-level capital market.

Key words

time-varying Hurst index / GARCH model / option pricing / sub-mixed fractional Brownian motion

Cite this article

Download Citations
YU Mei , CHENG Zhiyong , DENG Jun , WANG Shouyang. A new option pricing method: Based on the perspective of sub-mixed fractional Brownian motion. Systems Engineering - Theory & Practice, 2021, 41(11): 2761-2776 https://doi.org/10.12011/SETP2019-2880

References

[1] 樊智,张世英.金融市场的效率与分形市场理论[J].系统工程理论与实践, 2002, 22(3):13-19.Fan Z, Zhang S Y. Efficiency of financial market and fractal market theory[J]. Systems Engineering-Theory & Practice, 2002, 22(3):13-19.
[2] 谭政勋,张欠.中国股票市场的长期记忆性与趋势预测研究[J].统计研究, 2016, 33(10):57-66.Tan Z X, Zhang Q. Research on the long-term memory of Chinese stock market and its trend prediction[J]. Statistical Research, 2016, 33(10):57-66.
[3] Nguyen D B B, Prokopczuk M, Sibbertsen P. The memory of stock return volatility:Asset pricing implications[J]. Journal of Financial Markets, 2019, 35(35):345-376.
[4] Black F, Scholes M. The pricing of options and corporate liabilities[J]. Journal of Political Economy, 1973, 81(3):637-654.
[5] Peters E E. Fractal structure in the capital markets[J]. Financial Analysts Journal, 1989, 45(4):32-37.
[6] Elliott R J, Chan L. Perpetual American options with fractional Brownian motion[J]. Quantitative Finance, 2004, 4(2):123-128.
[7] Elliott R J, Van Der Hoek J. A general fractional white noise theory and applications to finance[J]. Mathematical Finance, 2003, 13(2):301-330.
[8] Liu J, Li L, Yan L. Sub-fractional model for credit risk pricing[J]. International Journal of Nonlinear Sciences and Numerical Simulation, 2010, 11(4):231-236.
[9] Cheridito P. Arbitrage in fractional Brownian motion models[J]. Finance and Stochastics, 2003, 7(4):533-553.
[10] Necula C. Option pricing in a fractional Brownian motion environment[R]. Bucharest:Bucharest University of Economics, Center for Advanced Research in Finance and Banking, 2008.
[11] Hu Y, Oksendal B. Fractional white noise calculus and applications to finance[J]. Infinite Dimensional Analysis, Quantum Probability and Related Topics, 2003, 6(1):1-32.
[12] 刘善存,宋殿宇,金华.分数布朗运动下带违约风险的可转换债券定价[J].中国管理科学, 2011, 19(6):25-30.Liu S C, Song D Y, Jin H. Pricing convertible bonds with default risk in the fractional Brownian environment[J]. Chinese Journal of Management Science, 2011, 19(6):25-30.
[13] 肖炜麟,张卫国,徐维军.次分数布朗运动下带交易费用的备兑权证定价[J].中国管理科学, 2014, 22(5):1-7.Xiao W L, Zhang W G, Xu W J. Pricing covered warrants in a sub-fractional Brownian motion with transaction costs[J]. Chinese Journal of Management Science, 2014, 22(5):1-7.
[14] 史永东,程航,王光涛. 时变分数布朗运动下的GARCH族欧式期权定价研究[J]. 系统工程理论与实践, 2017, 37(10):2527-2538.Shi Y D, Cheng H, Wang G T. The family of GARCH European option pricing model under the fractional Brownian motion with time-varying Hurst index[J]. Systems Engineering-Theory & Practice, 2017, 37(10):2527-2538.
[15] Bandi F M, Russell J R, Yang C. Realized volatility forecasting and option pricing[J]. Journal of Econometrics, 2008, 147(1):34-46.
[16] Stentoft L. Option pricing using realized volatility[R]. Aarhus:Department of Economics and Business Economics, Aarhus University, 2008.
[17] Corsi F, Fusari N, La Vecchia D. Realizing smiles:Options pricing with realized volatility[J]. Journal of Financial Economics, 2013, 107(2):284-304.
[18] Heston S L, Nandi S. A closed-form GARCH option valuation model[J]. Review of Financial Studies, 2000, 13(3):585-625.
[19] Duan J, Gauthier G, Simonato J, et al. Approximating the GJR-GARCH and EGARCH option pricing models analytically[J]. Journal of Computational Finance, 2006, 9(3):41-69.
[20] Huang Z, Wang T, Hansen P R. Option pricing with the realized GARCH model:An analytical approximation approach[J]. Journal of Futures Markets, 2017, 37(4):328-358.
[21] 郑尊信,王华然,朱福敏. 基于Levy-GARCH模型的上证50ETF市场跳跃行为与波动特征研究[J]. 中国管理科学, 2019, 27(2):41-52.Zheng Z X, Wang H R, Zhu F M. Study on the jump behavior and volatility characteristics of Shanghai 50ETF market based on Levy GARCH model[J]. Chinese Journal of Management Science, 2019, 27(2):41-52.
[22] 王西梅,赵延龙,史若诗.基于局部波动率模型的上证50ETF期权定价研究[J].系统工程理论与实践, 2019, 39(10):2487-2501.Wang X M, Zhao Y L, Shi R S. Pricing of Shanghai stock exchange 50ETF options based on local volatility model[J]. Systems Engineering-Theory & Practice, 2019, 39(10):2487-2501.
[23] 张波,蒋远营. 基于中国股票高频交易数据的随机波动建模与应用[J]. 统计研究, 2017, 34(3):107-117.Zhang B, Jiang Y Y. Stochastic volatility modeling based on high-frequency Chinese stock-market transaction data and applications[J]. Statistical Research, 2017, 34(3):107-117.
[24] Hull J, White A. The pricing of options on assets with stochastic volatilities[J]. Journal of Finance, 1987, 42(2):281-300.
[25] Tabak B M, Cajueiro D O. Are the crude oil markets becoming weakly efficient over time? A test for time-varying long-range dependence in prices and volatility[J]. Energy Economics, 2007, 29(1):28-36.
[26] 郑振龙,黄薏舟.波动率预测:GARCH模型与隐含波动率[J].数量经济技术经济研究, 2010, 27(1):140-150.Zheng Z L, Huang Y Z. Volatility forecast:GARCH model vs implied volatility[J]. The Journal of Quantitative & Technical Economics, 2010, 27(1):140-150.
[27] Mandelbrot B B, Wallis J R. Some long-run properties of geophysical records[J]. Water Resources Research, 1969, 5(2):321-340.

Funding

National Natural Science Foundation of China (72071046); Fundamental Research Funds for the Central Universities in UIBE (19YB10)

PDF(882 KB)

4023

Accesses

0

Citation

Detail

Sections
Recommended

/