Possibility calculation model of symmetric distribution interval number and its ranking method

GONG Rizhao, LI Shiyin, TAN Kexing

Systems Engineering - Theory & Practice ›› 2021, Vol. 41 ›› Issue (9) : 2428-2446.

PDF(964 KB)
PDF(964 KB)
Systems Engineering - Theory & Practice ›› 2021, Vol. 41 ›› Issue (9) : 2428-2446. DOI: 10.12011/SETP2019-2806

Possibility calculation model of symmetric distribution interval number and its ranking method

  • GONG Rizhao, LI Shiyin, TAN Kexing
Author information +
History +

Abstract

In interval number decision theory, it is a dual requirement for theoretical development and objective reality to incorporate the value distribution information of decision parameters into the concept connotation of interval number. Based on the connotation of the relationship between the number of intervals, this paper defines the concept of the number of intervals with distribution, and constructs the definition of the possibility degree of intervals with distribution and its general calculation model. When the two interval numbers are the same as the uniform distribution interval number, or one is the uniform distribution interval number and the other is the triangular distribution interval number, or the same triangular distribution interval number, the paper gives its' specific probability calculation formula. Then, several new properties of the number of distribution intervals and their possible degrees are given, and the relevant concepts proposed by scholars in the past are corrected. In order to solve the problem of interval number sorting, the optimal number sorting method is modified, and the equivalence between the optimal number sorting method and the median value sorting method of symmetric distribution interval number is revealed. Through the example calculation, the scientific validity and validity of the theory and method are verified, and the interval number decision theory is further improved, which has better application value.

Key words

interval number with distribution / possibility degree / ranking method

Cite this article

Download Citations
TAN Kexing , GONG Rizhao , LI Shiyin. Possibility calculation model of symmetric distribution interval number and its ranking method. Systems Engineering - Theory & Practice, 2021, 41(9): 2428-2446 https://doi.org/10.12011/SETP2019-2806

References

[1] 高峰记. 可能度及区间数综合排序[J]. 系统工程理论与实践, 2013, 33(8):2033-2040. Gao F J. Possibility degree and comprehensive priority of interval numbers[J]. Systems Engineering-Theory & Practice, 2013, 33(8):2033-2040.
[2] 张萌旭, 陈建东, 蒲明. 城镇居民收入分布函数的研究[J]. 数量经济技术经济研究, 2013(4):57-71. Zhang M X, Chen J D, Pu M. The research on urban resident income distribution function[J]. The Journal of Quantitative & Technical Economics, 2013(4):57-71.
[3] 龚日朝, 谭可星, 潘芬萍. 区间数相似度计算模型及其应用研究[J]. 邵阳学院学报(自然科学版), 2019, 16(1):1-14. Gong R Z, Tan K X, Pan F P. Research on interval number similarity degree computing model and its application[J], Journal of Shaoyang University (Natural Science Edition), 2019, 16(1):1-14.
[4] 张全, 樊治平, 潘德惠. 不确定性多属性决策中区间数的一种排序方法[J]. 系统工程理论与实践, 1999, 19(5):129-133. Zhang Q, Fan Z P, Pan D H. A ranking approach for interval numbers in uncertain multiple attribute decision making problems[J]. Systems Engineering-Theory & Practice, 1999, 19(5):129-133.
[5] 汪新凡, 肖满生. 基于正态分布区间数的信息不完全的群决策方法[J]. 控制与决策, 2010, 25(10):1494-1498. Wang X F, Xiao M S. Approach of group decision making based on normal distribution interval number with incomplete information[J]. Control and Decision, 2010, 25(10):1494-1498.
[6] 吴江, 黄登仕. 区间数排序方法研究综述[J]. 系统工程, 2004, 22(8):1-4. Wu J, Huang D S. An review on ranking methods of interval numbers[J]. Systems Engineering, 2004, 22(8):1-4.
[7] 孙海龙, 姚卫星. 区间数排序方法评述[J]. 系统工程学报, 2010, 25(3):18-26. Sun H L, Yao W X. Comments on methods for ranking interval numbers[J]. Journal of Systems Engineering, 2010, 25(3):18-26.
[8] Liu F. Acceptable consistency analysis of interval reciprocal comparison matrices[J]. Fuzzy Sets and Systems, 2009, 160(18):2686-2700.
[9] Xia M, Chen J. Studies on interval multiplicative preference relations and their application to group decision making[J]. Group Decision & Negotiation, 2015, 24(1):115-144.
[10] Li K W, Wang Z J, Tong X. Acceptability analysis and priority weight elicitation for interval multiplicative comparison matrices[J]. European Journal of Operational Research, 2016, 250(2):628-638.
[11] Senguta A, Pal T K. On comparing interval numbers[J]. European Journal of Operation Research, 2000, 127:28-43.
[12] 邱涤珊, 贺川, 朱晓敏. 基于概率可信度的区间数排序方法[J]. 控制与决策, 2012, 27(12):1894-1898. Qiu D S, He C, Zhu X M. Ranking method research of interval numbers based on probability reliability distribution[J], Control and Decision, 2012, 27(12):1894-1898.
[13] 陈春芳, 朱传喜. 基于向量相似度的区间数排序方法及其应用[J]. 统计与决策, 2014(3):76-78. Chen C F, Zhu C X. The sorting method of interval number based on vector similarity and its application[J]. Statistics and Decision, 2014(3):76-78.
[14] 徐泽水, 达庆利. 区间数排序的可能度法及其应用[J]. 系统工程学报, 2003, 18(1):67-70. Xu Z S, Da Q L. Possibility degree method for ranking interval numbers and its application[J]. Journal of Systems Engineering, 2003, 18(1):67-70.
[15] Nakahara Y, Sasaki M, Gen M. On the linear programming problems with interval coefficients[C]//Conference on Computers and Industrial Engineering. Pergamon Press Ltd., 1992:301-304.
[16] 达庆利, 刘新旺. 区间数线性规划及其满意解[J]. 系统工程理论与实践, 1999, 19(4):3-7. Da Q L, Liu X W. Interval number linear programming and its satisfactory solution[J]. Systems Engineering-Theory & Practice, 1999, 19(4):3-7.
[17] 龚日朝,潘芬萍. 非均匀分布下区间数排序可能度计算模型及其应用[J].中国管理科学, 2020, 28(12):220-230. Gong R Z, Pan F P. A Possibility degree model for ranking interval numbers under non-uniform distribution and its application[J]. Chinese Journal of Management Science, 2020, 28(12):220-230.
[18] 兰继斌, 曹丽娟, 林健. 基于二维优先度的区间数排序方法[J]. 重庆工学院学报(自然科学版), 2007, 21(10):63-67. Lan J B, Cao L J, Lin J. Method for ranking interval numbers based on two-dimensional priority degree[J]. Journal of Chongqing Institute of Technology (Natural Science Edition), 2007, 21(10):63-67.
[19] 李德清, 谷云东. 一种基于可能度的区间数排序方法[J]. 系统工程学报, 2008, 23(2):243-246. Li D Q, Gu Y D. Method for ranking interval numbers based on possibility degree[J]. Journal of Systems Engineering, 2008, 23(2):243-246.
[20] 谢乃明, 刘思峰. 考虑概率分布的灰数排序方法[J]. 系统工程理论与实践, 2009, 29(4):171-177. Xie N M, Liu S F. On comparing grey numbers with their probability distributions[J]. Systems Engineering-Theory & Practice, 2009, 29(4):171-177.
[21] 肖峻, 张跃, 付川. 基于可能度的区间数排序方法比较[J]. 天津大学学报, 2011, 44(8):705-711. Xiao J, Zhang Y, Fu C. Comparison between methods of interval number ranking based on possibility[J]. Journal of Tianjin University, 2011, 44(8):705-711.
[22] Liu F, Pan L H, Liu Z L, et al. On possibility-degree formulae for ranking interval numbers[J]. Soft Computing, 2017(14):1-9.
[23] 谭吉玉, 朱传喜, 张小芝,等. 一种新的基于TOPSIS的区间数排序法[J]. 统计与决策, 2015(1):94-96. Tan J Y, Zhu C X, Zhang X Z, et al. A new sort method of interval numbers based on TOPSIS[J]. Statistics and Decision, 2015(1):94-96.
[24] 李德清, 韩国柱, 曾文艺,等. 基于布尔矩阵的区间数排序方法[J]. 控制与决策, 2016, 31(4):629-634. Li D Q, Han G Z, Zeng W Y, et al. Ranking method of interval numbers based on Boolean matrix[J]. Control & Decision, 2016, 31(4):629-634.
[25] 高德宝, 于辉. 一种新的区间数的比较与排序方法[J]. 统计与决策, 2017(17):41-44. Gao D B, Yu H. A new method for comparing and sorting interval numbers[J]. Statistics and Decision, 2017(17):41-44.
[26] 曾文艺, 罗承忠. 区间数的综合决策模型[J]. 系统工程理论与实践, 1997, 17(11):48-50. Zeng W Y, Luo C Z. Comprehensive decision model of interval-number[J]. Systems Engineering-Theory & Practice, 1997, 17(11):48-50.

Funding

National Social Science Foundation of China (18BTJ036)
PDF(964 KB)

705

Accesses

0

Citation

Detail

Sections
Recommended

/