Research on the comprehensive dynamic evaluation of the development level of industrial robots in the context of artificial intelligence — Taking the manufacturing as an example

LI Shuqin, WANG Haochen, WANG Shouyang

Systems Engineering - Theory & Practice ›› 2020, Vol. 40 ›› Issue (11) : 2958-2967.

PDF(984 KB)
PDF(984 KB)
Systems Engineering - Theory & Practice ›› 2020, Vol. 40 ›› Issue (11) : 2958-2967. DOI: 10.12011/1000-6788-2020-0842-10

Research on the comprehensive dynamic evaluation of the development level of industrial robots in the context of artificial intelligence — Taking the manufacturing as an example

  • LI Shuqin1, WANG Haochen2, WANG Shouyang3
Author information +
History +

Abstract

The industrial robot is a machine that can be controlled automatically and programmed. It is also an important basis for the intelligent transformation of manufacturing industry. To some extent, the development level of industrial robots can be used as a key factor to measure the level of industrial automation in a country. 15 countries with manufacturing, purchasing and using industry robots are taken as research samples. Using the time-series global principal component analysis method, the data of industrial robots, manufacturing and economy of each country from 2010 to 2017 are analyzed. Three components of the industrial robot development intensity, the industrial robot industry needs and the industrial robot economic scale are extracted from 11 indexes. By using these components to construct a three-dimensional comprehensive dynamic evaluation index system, the dynamic change of industrial robots in China can be evaluated.

Key words

manufacturing / industrial robots / comprehensive dynamic evaluation / artificial intelligence

Cite this article

Download Citations
LI Shuqin , WANG Haochen , WANG Shouyang. Research on the comprehensive dynamic evaluation of the development level of industrial robots in the context of artificial intelligence — Taking the manufacturing as an example. Systems Engineering - Theory & Practice, 2020, 40(11): 2958-2967 https://doi.org/10.12011/1000-6788-2020-0842-10

References

[1] Finlayson M A, Richards W, Winston P H. Computational models of narrative:Review of a workshop[J]. AI Magazine, 2010, 31(2):97-100.
[2] 周济. 智能制造——"中国制造2025"的主攻方向[J]. 中国机械工程, 2015, 26(17):2273-2284. Zhou J. Intelligent manufacturing-Main direction of "Made in China 2025"[J]. China Mechanical Engineering, 2015, 26(17):2273-2284.
[3] 李钢, 廖建辉, 向奕霓. 中国产业升级的方向与路径——中国第二产业占GDP的比例过高了吗[J]. 中国工业经济, 2011(10):16-26. Li G, Liao J H, Xiang Y N. Direction and route of China's industrial upgrading[J]. China Industrial Economics, 2011(10):16-26.
[4] 姚锡凡, 张剑铭, LIN Yingzi. 智慧制造系统的基础理论与技术体系[J]. 系统工程理论与实践, 2016, 36(10):2699-2711. Yao X F, Zhang J M, Lin Y Z. The basic theory and technical framework for wisdom manufacturing systems[J]. Systems Engineering-Theory & Practice, 2016, 36(10):2699-2711.
[5] Atkinson R D. Which nations really lead in industrial robot adoption?[R]. Information Technology & Innovation Foundation, 2018.
[6] 喻一帆. 国际工业机器人产业发展路径及对我国的启示[J]. 对外经贸实务, 2016(6):25-28. Yu Y F. The development path of international industrial robot industry and its enlightenment to China[J]. Practice in Foreign Economic Relations and Trade, 2016(6):25-28.
[7] 骆敏舟, 方健, 赵江海. 工业机器人的技术发展及其应用[J]. 机械制造与自动化, 2015, 44(1):1-4. Luo M Z, Fang J, Zhao J H. The development and the application of the industrial robot technology[J]. Machine Building & Automation, 2015, 44(1):1-4.
[8] Kong D, Zhou Y, Liu Y, et al. Using the data mining method to assess the innovation gap:A case of industrial robotics in a catching-up country[J]. Technological Forecasting and Social Change, 2017, 119:80-97.
[9] 程虹, 陈文津, 李唐. 机器人在中国:现状、未来与影响——来自中国企业-劳动力匹配调查(CEES)的经验证据[J]. 宏观质量研究, 2018, 6(3):1-21. Cheng H, Chen W J, Li T. Robots in China:Status, future and impact-Empirical evidence from the China employer-employee survey (CEES)[J]. Journal of Macro-Quality Research, 2018, 6(3):1-21.
[10] 马岚. 中国会出现机器人对人工的规模替代吗?——基于日韩经验的实证研究[J]. 世界经济研究, 2015(10):71-79+ 128-129. Ma L. Whether will there be a scale replacement of robot to labor in China? Study based on the experience of Japan and South Korea[J]. World Economy Studies, 2015(10):71-79+128-129.
[11] 吕洁, 杜传文, 李元旭. 工业机器人应用会倒逼一国制造业劳动力结构转型吗?——基于1990-2015年间22个国家的经验分析[J]. 科技管理研究, 2017, 37(22):32-41. Lü J, Du C W, Li Y X. Do the application of industrial robots force a country's manufacturing labor structures transforming? Based on the empirical analysis of 22 countries in 1990-2015[J]. Science and Technology Management Research, 2017, 37(22):32-41.
[12] 罗连发, 储梦洁, 刘俊俊. 机器人的发展:中国与国际的比较[J]. 宏观质量研究, 2019, 7(3):38-50.Luo L F, Chu M J, Liu J J. The development of robots:Comparison between China and the world[J]. Journal of Macro-Quality Research, 2019, 7(3):38-50.
[13] 沈宏超. 长江经济带机器人产业竞争力评价及提升对策研究——基于修正的钻石模型[J]. 重庆科技学院学报(社会科学版), 2016(8):42-46. Shen H C. Research on the evaluation and improvement of robot industry competitiveness in Yangtze River economic belt-Based on modified diamond model[J]. Journal of Chongqing University of Science and Technology (Social Sciences Edition), 2016(8):42-46.
[14] 刘媛, 黄斌, 姚缘. 长三角地区机器人发展竞争力比较研究[J]. 产业经济评论, 2017(4):65-74. Liu Y, Huang B, Yao Y. A comparative study on the competitiveness of robot development in Yangtze River Delta[J]. Review of Industrial Economics, 2017(4):65-74.
[15] Chen G, Zhang W. Comprehensive evaluation method for performance of unmanned robot applied to automotive test using fuzzy logic and evidence theory and FNN[J]. Computers in Industry, 2018, 98:48-55.
[16] Li L, Zhao J, Yan C. Motion similarity comprehensive evaluation of humanoid robot arm based on dynamic comprehensive evaluation method[J]. Proceedings of the Institution of Mechanical Engineers, Part C:Journal of Mechanical Engineering Science, 2020, 234(13):2694-2706.
[17] Feng W, Xu P, Qian H. Study on water resource carrying capacity of Xi'an based on AHP-fuzzy synthetic evaluation model[J]. IOP Conference Series:Earth and Environmental Science, 2020, 467(1):012149.
[18] Zhang Y, Zhao T, Zhang Z, et al. Modeling and dynamic assessment on sustainable development of drainage enterprise:Application of a coupled system dynamics-comprehensive assessment model[J]. Journal of Cleaner Production, 2017, 141:157-167.
[19] Gao S, Sun H, Zhao L, et al. Dynamic assessment of island ecological environment sustainability under urbanization based on rough set, synthetic index and catastrophe progression analysis theories[J]. Ocean & Coastal Management, 2019, 178:104790.
[20] 钱诚. "中国制造"还具有劳动力成本比较优势吗?——基于动态评价模型的国际比较[J]. 经济纵横, 2020(4):77-88. Qian C. Does "Made in China" still have comparative advantages in labor costs?-International comparison based on the dynamic evaluation model[J]. Economic Review Journal, 2020(4):77-88.
[21] 孟斌, 杨越, 刁姝杰. 基于显著区分两类客户的小型建筑企业信用评价模型研究[J]. 系统工程理论与实践, 2019, 39(2):346-359. Meng B, Yang Y, Diao S J. Credit evaluation model of small construction enterprises based on discriminating between two types of customers[J]. Systems Engineering-Theory & Practice, 2019, 39(2):346-359.
[22] 徐雅静, 汪远征. 变量聚类-全局主成分分析在我国普通高等教育发展水平评价中的应用[J]. 数理统计与管理, 2006(5):566-573.Xu Y J, Wang Y Z. The application of variable cluster-the principle component analysis of overall situation in the evaluation of the general higher education development in China[J]. Application of Statistics and Management, 2006(5):566-573.
[23] 朱鹤, 刘家明. 中国东部地区旅游业竞争力研究——基于时序全局主成分分析法[J]. 地域研究与开发, 2015, 34(5):100-104. Zhu H, Liu J M. Study on tourism industry competitiveness in eastern China based on time series analysis and all-around PCA[J]. Areal Research and Development, 2015, 34(5):100-104.
[24] 罗乐. 中国房地产周期波动的统计研究[D]. 成都:四川大学, 2007. Luo L. Statistical research on Chinese real estate cycle fluctuation[D]. Chengdu:Sichuan University, 2007.
[25] 陈秋霖, 许多, 周羿. 人口老龄化背景下人工智能的劳动力替代效应——基于跨国面板数据和中国省级面板数据的分析[J]. 中国人口科学, 2018(6):30-42+126-127. Chen Q L, Xu D, Zhou Y. Labour substitution effect of artificial intelligence in the era of population aging:Evidence from panel data across countries and panel data at provincial level in China[J]. Chinese Journal of Population Science, 2018(6):30-42+126-127.
[26] 韩民春, 赵一帆. 工业机器人对中国制造业的就业效应[J]. 工业技术经济, 2019, 38(11):3-12. Han M C, Zhao Y F. The employment effect of industrial robots in Chinese manufacturing[J]. Journal of Industrial Technological Economics, 2019, 38(11):3-12.
[27] 刘伟, 蔡志洲. 新时代中国经济增长的国际比较及产业结构升级[J]. 管理世界, 2018, 34(1):16-24. Liu W, Cai Z Z. International comparison of China's economic growth in the new Era and upgrading of industrial structure[J]. Management World, 2018, 34(1):16-24.
[28] 赵玉林, 谷军健. 中美制造业发展质量的测度与比较研究[J]. 数量经济技术经济研究, 2018, 35(12):116-133.Zhao Y L, Gu J J. Measurement and comparison of the development quality in manufacturing between China and the US[J]. The Journal of Quantitative & Technical Economics, 2018, 35(12):116-133.
[29] 徐建伟, 杨合湘, 戴俊骋. 中美制造业发展主要特征及趋势比较研究[J]. 经济纵横, 2019(2):88-100.Xu J W, Yang H X, Dai J C. A comparative study of the main characteristics and trends of Chinese and American Manufacturing industry development[J]. Economic Review Journal, 2019(2):88-100.
[30] 盛朝迅. 中美比较视角下我国制造业发展存在的问题及对策[J]. 湖北大学学报(哲学社会科学版), 2020, 47(3):153-162.Sheng C X. Problems and countermeasures in the development of China's manufacturing industry from the perspective of comparison between China and the US[J]. Journal of Hubei University (Philosophy and Social Science), 2020, 47(3):153-162.
[31] 燕晓飞. 劳动生产率水平:产业工人队伍建设改革的逻辑起点[J]. 企业经济, 2019, 38(12):112-121. Yan X F. Labor productivity level:The starting point of industrial worker team construction and reform[J]. Enterprise Economy, 2019, 38(12):112-121.

Funding

Emergency Management Project of National Natural Science Foundation of China in 2018 (71843008); Consultation and Evaluation Project of the Department of Chinese Academy of Sciences (2019-Z10-A-018)
PDF(984 KB)

Accesses

Citation

Detail

Sections
Recommended

/