Comparison analysis of systemic risk measures—A study based on real economic risk forecasting

HUANG Naijing, YU Mingzhe

Systems Engineering - Theory & Practice ›› 2020, Vol. 40 ›› Issue (10) : 2475-2491.

PDF(3017 KB)
PDF(3017 KB)
Systems Engineering - Theory & Practice ›› 2020, Vol. 40 ›› Issue (10) : 2475-2491. DOI: 10.12011/1000-6788-2019-1809-17

Comparison analysis of systemic risk measures—A study based on real economic risk forecasting

  • HUANG Naijing1, YU Mingzhe2
Author information +
History +

Abstract

This paper summarizes four kinds of systemic risk indicators. Based on the perspective of real economic risk prediction, we use quantile regression model and Bootstrap quantile t test method, combined with the out-of-sample quantile forecast R square, to compare and analyze the above indicators in terms of "whether it has the amplification effects on real economic risk" and "whether it has the prediction ability of real economic risk". The results show that: First, the indicators reflecting the individual risk of institutions, volatility and instability, as well as liquidity and credit conditions have the amplification effects on the downside risk of the real economy in the future, that is, the increased of systemic risk will lead to the amplification of future real economic downturn risk; Secondly, in the short term, the indicators reflecting the individual risk of institutions and liquidity can effectively predict the future real economic risk, while the indicators representing the level of financial market volatility have good prediction ability in the medium and long term. Finally, we also put forward some suggestions for improving China's macroeconomic risk prevention system.

Key words

systemic risk / real economic risk / quantile regression model / bootstrap quantile t test method

Cite this article

Download Citations
HUANG Naijing , YU Mingzhe. Comparison analysis of systemic risk measures—A study based on real economic risk forecasting. Systems Engineering - Theory & Practice, 2020, 40(10): 2475-2491 https://doi.org/10.12011/1000-6788-2019-1809-17

References

[1] Billio M, Getmansky M, Lo A W, et al. Econometric measures of connectedness and systemic risk in the finance and insurance sectors[J]. Journal of Financial Economics, 2012, 104(3):535-559.
[2] Bisias D, Flood M, Lo A W, et al. A survey of systemic risk analytics[J]. Annual Review of Financial Economics, 2012, 76(4):119-131.
[3] Adrian T, Brunnermeier M K. CoVaR[J]. American Economic Review, 2016, 106(7):1705-1741.
[4] Girardi G, Ergün A T. Systemic risk measurement:Multivariate GARCH estimation of CoVaR[J]. Journal of Banking and Finance, 2013, 37(8):3169-3180.
[5] Reboredo J C, Ugolini A. Systemic risk in European sovereign debt markets:A CoVaR-copula approach[J]. Journal of International Money and Finance, 2015, 51(5):214-244.
[6] 刘晓星, 段斌, 谢福座. 股票市场风险溢出效应研究:基于EVT-Copula-CoVaR模型的分析[J]. 世界经济, 2011(11):145-159. Liu X X, Duan B, Xie F Z. Stock market risk spillover effect:Analysis based on EVT-Copula-CoVaR model[J]. The Journal of World Economy, 2011(11):145-159.
[7] 许启发, 王侠英, 蒋翠侠, 等. 基于藤copula-CAViaR方法的股市风险溢出效应研究[J]. 系统工程理论与实践, 2018, 38(11):2738-2749. Xu Q F, Wang X Y, Jiang C X, et al. Investigating risk spillover effects among stock markets:A vine copula-CAViaR approach[J]. Systems Engineering-Theory & Practice, 2018, 38(11):2738-2749.
[8] Acharya V, Engle R, Richardson M. Capital shortfall:A new approach to ranking and regulating systemic risks[J]. American Economic Review, 2012, 102(3):59-64.
[9] Brownlees C, Engle R F. SRISK:A conditional capital shortfall measure of systemic risk[J]. Review of Financial Studies, 2017, 30(1):48-79.
[10] 梁琪, 李政, 郝项超. 我国系统重要性金融机构的识别与监管——基于系统性风险指数SRISK方法的分析[J]. 金融研究, 2013(9):56-70. Liang Q, Li Z, Hao X C. Identification and supervision of systemically important financial institutions in China:Analysis based on systemic risk index SRISK[J]. Journal of Financial Research, 2013(9):56-70.
[11] 黄乃静, 张冰洁, 郭冬梅, 等. 中国股票市场行业间金融传染检验和风险防范[J]. 管理科学学报, 2017, 20(12):19-28.Huang N J, Zhang B J, Guo D M, et al. Industry-level financial contagion of the Chinese stock market and systemic risk control[J]. Journal of Management Sciences in China, 2017, 20(12):19-28.
[12] 黄乃静, 汪寿阳. 中欧货币汇率的极端风险传播研究[J]. 管理科学学报, 2018, 21(12):2-17.Huang N J, Wang S Y. The extreme risk spillover between European currencies and Chinese Renminbi[J]. Journal of Management Sciences in China, 2018, 21(12):2-17.
[13] 鲍勤, 孙艳霞. 网络视角下的金融结构与金融风险传染[J]. 系统工程理论与实践, 2014, 34(9):2202-2211. Bao Q, Sun Y X. Financial structure and financial contagion from the network perspective[J]. Systems Engineering-Theory & Practice, 2014, 34(9):2202-2211.
[14] 樊欣, 杨晓光. 我国银行业操作风险的蒙特卡罗模拟估计[J]. 系统工程理论与实践, 2005, 25(5):12-19. Fan X, Yang X G. Estimating operational risk of China's commercial bank sector via Monte Carlo simulation[J]. Systems Engineering-Theory & Practice, 2005, 25(5):12-19.
[15] 刘超, 徐君慧, 周文文,等. 中国金融市场的风险溢出效应研究——基于溢出指数和复杂网络方法[J]. 系统工程理论与实践, 2017, 37(4):831-842. Liu C, Xu J H, Zhou W W, et al. Study on risk spillover effect of financial markets in China based on methods of spillover index and complex network[J]. Systems Engineering-Theory & Practice, 2017, 37(4):831-842.
[16] Bernanke B, Gertler M, Gilchrist S. The financial accelerator in a quantitative business cycle framework[R]. NBER Working Papers, No. w6455, 1998.
[17] Kiyotaki N, Moore J. Credit cycles[J]. Journal of Political Economy, 1997, 105(2):211-248.
[18] Gertler M, Kiyotaki N, Queralto A. Financial crises, bank risk exposure and government financial policy[J]. Journal of Monetary Economics, 2012, 59(12):S17-S34.
[19] Brunnermeier M K, Sannikov Y. A macroeconomic model with a financial sector[J]. American Economic Review, 2014, 104(2):379-421.
[20] Atilgan Y, Bali T G, Demirtas K O, et al. Global downside risk and equity returns[J]. Journal of International Money and Finance, 2019, 98:102065. https://doi.org/10.1016/j.jimonfin.2019.102065.
[21] Allen L, Bali T G, Tang Y. Does systemic risk in the financial sector predict future economic downturns?[J]. Review of Financial Studies, 2012, 25(10):3000-3036.
[22] De Nicolo G, Lucchetta M. Systemic risks and the macroeconomy[R]. NBER Working Paper, No. w16998, 2011.
[23] Giglio S, Kelly B, Pruitt S. Systemic risk and the macroeconomy:An empirical evaluation[J]. Journal of Financial Economics, 2016, 119(3):457-471.
[24] Adrian T, Boyarchenko N, Giannone D. Vulnerable growth[J]. American Economic Review, 2019, 109(4):1263-1289.
[25] Efron B, Tibshirani R. Bootstrap methods for standard errors, confidence intervals, and other measures of statistical accuracy[J]. Statistical Science, 1986, 1(1):54-75.
[26] Angelis D D, Hall P, Young G A. Analytical and bootstrap approximations to estimator distributions in L1 regression[J]. Journal of the American Statistical Association, 1993, 88(424):1310-1316.
[27] Buchinsky M. Changes in the US wage structure 1963-1987:Application of quantile regression[J]. Econometrica, 1994, 62(2):405-405.
[28] Hahn J. Bootstrapping quantile regression estimators[J]. Econometric Theory, 1995, 11(1):105-121.
[29] Koenker R, Hallock K F. Quantile regression[J]. Journal of Economic Perspectives, 2001, 15(4):143-156.
[30] Parzen M I, Wei L J, Ying Z. A resampling method based on pivotal estimating functions[J]. Biometrika, 1994, 81(2):341-350.
[31] 王广龙, 熊利平, 王连猛. SRISK测算方法、结果及评述[J].投资研究, 2014, 33(4):63-73. Wang G L, Xiong L P, Wang L M. Measuring systemic risk by SRISK:Method, results, and comments[J]. Review of Investment Studies, 2014, 33(4):63-73.
[32] Kritzman M, Li Y S. Financial turbulence, and risk management[J]. Financial Analysts Journal, 2010, 66(5):30-41.
[33] Kritzman M, Li Y S, Page S, et al. Principal components as a measure of systemic risk[J]. The Journal of Portfolio Management, 2011, 37(4):112-126.
[34] Patton A J. A review of copula models for economic time series[J]. Journal of Multivariate Analysis, 2012, 110(9):4-18.
[35] Amihud Y. Illiquidity and stock returns:Cross-section and time-series effects[J]. Journal of Financial Markets, 2002, 5(1):31-56.
[36] Bai J, Ng S. Forecasting economic time series using targeted predictors[J]. Journal of Econometrics, 2008, 146(2):304-317.
[37] Stock J H, Watson M W. Generalized shrinkage methods for forecasting using many predictors[J]. Journal of Business and Economic Statistics, 2012, 30(4):481-493.
[38] 黄乃静, 于明哲. 机器学习对经济学研究的影响研究进展[J]. 经济学动态, 2018(7):115-129. Huang N J, Yu M Z. The progress of research on the influence of machine learning on economic research[J]. Economic Perspectives, 2018(7):115-129.

Funding

National Natural Science Foundation of China (71850005, 72003212)
PDF(3017 KB)

763

Accesses

0

Citation

Detail

Sections
Recommended

/