Large-dimensional covariance matrix estimation and its application with RCM using high frequency data

NI Xuanming, QIAN Long, ZHAO Huimin, HUANG Song

Systems Engineering - Theory & Practice ›› 2019, Vol. 39 ›› Issue (8) : 1943-1953.

PDF(948 KB)
PDF(948 KB)
Systems Engineering - Theory & Practice ›› 2019, Vol. 39 ›› Issue (8) : 1943-1953. DOI: 10.12011/1000-6788-2019-0301-11

Large-dimensional covariance matrix estimation and its application with RCM using high frequency data

  • NI Xuanming1, QIAN Long1, ZHAO Huimin2, HUANG Song1
Author information +
History +

Abstract

Factor-based covariance estimation is an important direction of high-frequency and large-dimensional covariance estimation. In order to overcome the subjectivity of sector-based block-diagonalizing method, we introduce RCM reordering method to reorder the residual matrix and conduct thresholding under new block-diagonal structure. Firstly, we disorganize the original residual matrix that contains clear block-diagonal structure. Then we use RCM to restore its order and the result shows that RCM can fully restore the latent block-diagonal structure. Next, using high-frequency data of market crash period in 2015 and year 2018, we combine pre-averaging method and RCM-based POET to construct a new covariance estimator. The comparison of this new estimator against the others suggests that the modified factor model and estimator outperform other covariance estimators in terms of predicting the future. Moreover, it also performs well when optimizing the minimum variance portfolio with gross-exposure constraint.

Key words

RCM algorithm / factor model / larger-dimensional covariance matrix / principle components analysis (PCA)

Cite this article

Download Citations
NI Xuanming , QIAN Long , ZHAO Huimin , HUANG Song. Large-dimensional covariance matrix estimation and its application with RCM using high frequency data. Systems Engineering - Theory & Practice, 2019, 39(8): 1943-1953 https://doi.org/10.12011/1000-6788-2019-0301-11

References

[1] Markowitz H. Portfolio selection[J]. Journal of Finance, 1952(7):77-91.
[2] 刘丽萍. 大维数据背景下金融协方差阵的估计及应用[J]. 系统工程理论与实践, 2017, 37(3):597-606.Liu L P. Estimation and application study on the financial covariance matrix of large dimensional data[J]. Systems Engineering-Theory & Practice, 2017, 37(3):597-606.
[3] 刘丽萍. 高维投资组合风险的估计[J]. 系统科学与数学, 2018, 38(8):919-930.Liu L P. Estimation of high dimensional portfolio risk[J]. Journal of Systems Science & Mathematical Sciences, 2018, 38(8):919-930.
[4] Merton R C. On estimating the expected return on the market:An exploratory investigation[J]. Journal of financial economics, 1980, 8(4):323-361.
[5] Zhang L, Mykland P A, Ait-Sahalia Y. A tale of two time scales:Determining integrated volatility with noisy high-frequency data[J]. Journal of the American Statistical Association, 2005, 100(472):1394-1411.
[6] Zhang L. Efficient estimation of stochastic volatility using noisy observations:A multi-scale approach[J]. Bernoulli, 2006, 12(6):1019-1043.
[7] Barndorff-Nielsen O E, Hansen P R, Lunde A, et al. Designing realized kernels to measure the ex post variation of equity prices in the presence of noise[J]. Econometrica, 2008, 76(6):1481-1536.
[8] Jacod J, Li Y, Mykland P A, et al. Microstructure noise in the continuous case:The pre-averaging approach[J]. Stochastic Processes and Their Applications, 2009, 119(7):2249-2276.
[9] Christensen K, Kinnebrock S, Podolskij M. Pre-averaging estimators of the ex-post covariance matrix in noisy diffusion models with non-synchronous data[J]. Journal of Econometrics, 2010, 159(1):116-133.
[10] Cai T, Liu W. Adaptive thresholding for sparse covariance matrix estimation[J]. Journal of the American Statistical Association, 2011, 106(494):672-684.
[11] Wang Y, Zou J. Vast volatility matrix estimation for high-frequency Financial data[J]. The Annals of Statistics, 2010, 38(2):943-978.
[12] Kim D, Kong X B, Li C X, et al. Adaptive thresholding for large volatility matrix estimation based on high-frequency financial data[J]. Journal of Econometrics, 2018, 203(1):69-79.
[13] 赵钊. 高维条件协方差矩阵的非线性压缩估计及其在构建最优投资组合中的应用[J]. 中国管理科学, 2017, 25(8):46-57.Zhao Z. Nonlinear shrinkage estimation of high dimensional conditional covariance matrix and its application in portfolio selection[J]. Chinese Journal of Management Science, 2017, 25(8):46-57.
[14] 刘丽萍. 基于混合频率数据的大维协方差阵的估计及其应用[J]. 系统科学与数学, 2017, 37(6):1532-1540.Liu L P. Estimation and application study on the large dimensional covariance matrix of mixed-frequency data[J]. Journal of Systems Science & Mathematical Sciences, 2017, 37(6):1532-1540.
[15] 魏凤荣. 具有特殊协方差结构的SURE模型中参数估计的若干结果[J]. 系统科学与数学, 1999, 19(1):86-94.Wei F R. Several results on parameter estimation in SURE model with special covariance structures[J]. Journal of Systems Science & Mathematical Sciences, 1999, 19(1):86-94.
[16] 唐勇, 张世英, 张瑞锋. 基于高频方差持续的资本资产定价模型研究[J]. 系统工程理论与实践, 2006, 26(10):9-16.Tang Y, Zhang S Y, Zhang R F. The research on capital asset pricing model based on persistence of conditional variances in high-frequency data[J]. Systems Engineering-Theory & Practice, 2006, 26(10):9-16.
[17] Fan J, Liao Y, Mincheva M. Large covariance estimation by thresholding principal orthogonal complements[J]. Journal of the Royal Statistical Society:Series B (Statistical Methodology), 2013, 75(4):603-680.
[18] Fan J, Furger A, Xiu D. Incorporating global industrial classification standard into portfolio allocation:A simple factor-based large covariance matrix estimator with high-frequency data[J]. Journal of Business & Economic Statistics, 2016, 34(4):489-503.
[19] Ait-Sahalia Y, Xiu D. Using principal component analysis to estimate a high dimensional factor model with high-frequency data[J]. Journal of Econometrics, 2017, 201(2):384-399.
[20] Ait-Sahalia Y, Xiu D. Principal component analysis of high-frequency data[J]. Journal of the American Statistical Association, 2019, 114(525):287-303.
[21] Higham N J. Computing the nearest correlation matrix-A problem from finance[J]. IMA Journal of Numerical Analysis, 2002, 22(3):329-343.
[22] Higham N J, Strabic N. Anderson acceleration of the alternating projections method for computing the nearest correlation matrix[J]. Numerical Algorithms, 2016, 72(4):1021-1042.
[23] Kim D, Wang Y, Zou J. Asymptotic theory for large volatility matrix estimation based on high-frequency financial data[J]. Stochastic Processes and Their Applications, 2016, 126(11):3527-3577.
[24] Cuthill E, McKee J. Reducing the bandwidth of sparse symmetric matrices[C]//Proceedings of the 196924th National Conference. ACM, 1969:157-172.
[25] Chen Z, Strebulaev I A. Macroeconomic risk and idiosyncratic risk-taking[J]. The Review of Financial Studies, 2018, 32(3):1148-1187.

Funding

National Natural Science Foundation of China (71721001)
PDF(948 KB)

805

Accesses

0

Citation

Detail

Sections
Recommended

/