Time delay analysis model based on the generalized dynamic grey incidence window concept

LI Chong, QU Yuling, QIAN Guanwen

Systems Engineering - Theory & Practice ›› 2019, Vol. 39 ›› Issue (12) : 3248-3261.

PDF(841 KB)
PDF(841 KB)
Systems Engineering - Theory & Practice ›› 2019, Vol. 39 ›› Issue (12) : 3248-3261. DOI: 10.12011/1000-6788-2018-2081-14

Time delay analysis model based on the generalized dynamic grey incidence window concept

  • LI Chong1, QU Yuling2, QIAN Guanwen1
Author information +
History +

Abstract

Based on the criterion of the static maximum grey incidence degree, the classic time-delay analysis method strongly depends on time series samples. This affects the representativeness of the delay values, and even causes contradictory results. To solve these problems, this study develops a new dynamic time-delay analysis method. First, a new generalized grey incidence model is constructed by introducing a novel new information priority weighting operator. Then, to overcome the disadvantages of the widely used classic grey incidence-based time delay analysis method, a new concept of dynamic grey incidence window is proposed, which helps to extract all possible time delays between sequences. Based on this new model and the dynamic grey incidence window concept, the time-delay incidence matrix and related time-delay incidence vectors are obtained. A novel grey stack matrix is designed to realize the effective extraction of the representative value from all potential time delays between sequences. Finally, a case study of the time delays between some important macroeconomic indicator sequences is carried out. Compared with the classic method, result shows that the proposed time delay analysis method can provide more reliable representative time delay values.

Key words

grey incidence degree / time delay analysis / new information priority weighting operator

Cite this article

Download Citations
LI Chong , QU Yuling , QIAN Guanwen. Time delay analysis model based on the generalized dynamic grey incidence window concept. Systems Engineering - Theory & Practice, 2019, 39(12): 3248-3261 https://doi.org/10.12011/1000-6788-2018-2081-14

References

[1] 张岐山, 郭喜江.灰关联熵分析法[J].系统工程理论与实践, 1996, 16(8):7-11. Zhang Q S, Guo X J. Grey relation entropy method of grey relation analysis[J]. Systems Engineering-Theory & Practice, 1996, 16(8):7-11.
[2] 罗党, 刘思峰.灰色关联决策方法研究[J].中国管理科学, 2005, 13(1):101-106. Luo D, Liu S F. Study on the method for grey incidence decision-making[J]. Chinese Journal of Management Science, 2005, 13(1):101-106.
[3] 赵艳林, 韦树英, 梅占馨.灰色欧几里德关联度[J].广西大学学报(自然科学版), 1998, 23(1):10-13. Zhao Y L, Wei S Y, Mei Z X. Grey Euclid relation grade[J]. Journal of Guangxi University (Natural Science Edition), 1998, 23(1):10-13.
[4] Liu S F, Lin Y. Grey information theory and practical applications[M]. London:Springer-Verlag, 2011.
[5] 党耀国, 朱晓月, 丁松.基于灰关联的面板数据聚类方法及在空气污染分析中的应用[J].决策与控制, 2017, 32(12):2227-2232. Dang Y G, Zhu X Y, Ding S. Panel data clustering method based on grey correlation degree and its application in air pollution analysis[J]. Control and Decision, 2017, 32(12):2227-2232.
[6] 张可, 刘思峰.灰色关联聚类在面板数据中的扩展及应用[J].系统工程理论与实践, 2010, 30(7):1253-1259. Zhang K, Liu S F. Extended clusters of grey incidences for panel data and its application[J]. Systems Engineering-Theory & Practice, 2010, 30(7):1253-1259.
[7] 吴利丰, 刘思峰.基于灰色凸关联度的面板数据聚类方法及应用[J].决策与控制, 2013, 28(7):1033-1036. Wu L F, Liu S F. Panel data clustering method based on grey convex relation and its application[J]. Control and Decision, 2013, 28(7):1033-1036.
[8] 刘思峰, 谢乃明, Forrest Jeffery.基于相似性和接近性视角的新型灰色关联分析模型[J]. 系统工程理论与实践, 2010, 30(5):881-887. Liu S F, Xie N M, Forrest J. On new models of grey incidence analysis based on visual angle of similarity and nearness[J]. Systems Engineering-Theory & Practice, 2010, 30(5):881-887.
[9] 王正新, 党耀国, 裴玲玲,等.基于累积前景理论的多指标灰关联决策方法[J].控制与决策, 2010, 25(2):232-236. Wang Z X, Dang Y G, Pei L L, et al. Multi-index grey relational decision-making based on cumulative prospect theory[J]. Control and Decision, 2010, 25(2):232-236.
[10] 刘思峰, 蔡华, 杨英杰, 等.灰色关联分析模型研究进展[J].系统工程理论与实践, 2013, 33(8):2041-2046. Liu S F, Cai H, Yang Y J, et al. Advance in grey incidence analysis modeling[J]. Systems Engineering-Theory & Practice, 2013, 33(8):2041-2046.
[11] 王海燕, 孟秀丽, 于荣, 等.食品质量链协同系统中的序参量识别研究[J].系统工程理论与实践, 2017, 37(7):1741-1751. Wang H Y, Meng X L, Yu R, et al. Research on order parameter identification of the food quality chain coordination system[J]. Systems Engineering-Theory & Practice, 2017, 37(7):1741-1751.
[12] 刘思峰, 党耀国, 方志耕, 等.灰色系统理论及其应用[M]. 5版, 北京:科学出版社, 2010. Liu S F, Dang Y G, Fang Z G, et al. Grey systems theory and its applications[M]. 5th ed. Beijing:Science Press, 2010.
[13] 张可, 曲品品.时滞多变量离散灰色模型及其应用[J].系统工程理论与实践, 2015, 35(8):2092-2103. Zhang K, Qu P P. Delay multi-variables discrete grey model and its application[J]. Systems Engineering-Theory & Practice, 2015, 35(8):2092-2103.
[14] 王正新.多变量时滞模型及其应用[J].控制与决策, 2015, 30(12):2298-2304. Wang Z X. Multivariable time-delayed model and its application[J]. Control and Decision, 2015, 30(12):2298-2304.
[15] 陈旭.基于时差分析法的旅游经济运行预警指标筛选[J].生态经济, 2013(11):87-89. Chen X. Indices selection for the early warning system of tourism macro-economic performance:Based on time difference relation method[J]. Ecological Economy, 2013(11):87-89.
[16] 刘呈玲,方红远.基于时差相关分析与回归模型的用水总量预测[J].节水灌溉, 2017(10):70-73. Liu C L, Fang H Y. Prediction of water consumption based on time difference correlation analysis and regression model[J]. Water Saving Irrigation, 2017(10):70-73.

Funding

National Natural Science Foundation of China (71401039); Fujian Natural Science Foundation (2017J01517)
PDF(841 KB)

560

Accesses

0

Citation

Detail

Sections
Recommended

/