A high-frequency volatility model with signed jumps variation based on external information impact

GONG Yizhou, HUANG Ran

Systems Engineering - Theory & Practice ›› 2019, Vol. 39 ›› Issue (9) : 2189-2202.

PDF(1144 KB)
PDF(1144 KB)
Systems Engineering - Theory & Practice ›› 2019, Vol. 39 ›› Issue (9) : 2189-2202. DOI: 10.12011/1000-6788-2018-1546-14

A high-frequency volatility model with signed jumps variation based on external information impact

  • GONG Yizhou, HUANG Ran
Author information +
History +

Abstract

Most HAR-RV-JUMP models of high frequency volatility only include the endogenous variables related to high frequency volatility, but ignore the impact of external information, which may lead to errors and bias in estimation and prediction. This paper introduces the impact of the external information into the existing HAR-RV-JUMP models by constructing a high-frequency volatility model with signed jump variation. These new models take into account not only the common influence of endogenous factors and external information, but also the asymmetric effect of multi-information on high frequency volatility. Then, high-frequency trading data of CSI 300 Index and CSI 500 Index is collected to make estimates and prediction, and rolling time window prediction method and SPA test are used to evaluate the forecasting capacity of HAR-V-RV-JUMP model. The result shows HAR-V-RV-JUMP models boast higher prediction accuracy in high frequency volatility than HAR-RV-JUMP models. However, the result also shows the performance of HAR-V-RV-JUMP models is better in predicting high frequency volatility during the stable period.

Key words

high-frequency volatility model / impact of multi-information / asymmetric effect / jump / signed jumps variation

Cite this article

Download Citations
GONG Yizhou , HUANG Ran. A high-frequency volatility model with signed jumps variation based on external information impact. Systems Engineering - Theory & Practice, 2019, 39(9): 2189-2202 https://doi.org/10.12011/1000-6788-2018-1546-14

References

[1] Andersen T G, Bollerslev T, Diebold F X, et al. The distribution of realized stock return volatility[J]. Journal of Financial Economics, 2001, 61(1):43-76.
[2] Andersen T G, Bollerslev T, Diebold F X, et al. Modeling and forecasting realized volatility[J]. Econometrica, 2003, 71(2):579-625.
[3] Koopman S J, Jungbacker B, Hol E. Forecasting daily variability of the S&P 100 stock index using historical, realised and implied volatility measurements[J]. Journal of Empirical Finance, 2004, 12(3):445-475.
[4] Corsi F. A simple approximate long-memory model of realized volatility[J]. Journal of Financial Econometrics, 2004, 7(2):174-196.
[5] Barndorff-Nielsen O E, Kinnebrock S, Shephard N. Measuring downside risk-realised semivariance[J]. Economics Papers, 2008(2008fe01).
[6] Andersen T G, Bollerslev T, Diebold F X. Roughing it up:Including jump components in the measurement, modeling, and forecasting of return volatility[J]. Review of Economics & Statistics, 2007, 89(4):701-720.
[7] Huang X, Tauchen G. The relative contribution of jumps to total price variance[J]. Journal of Financial Econometrics, 2005, 3(4):456-499.
[8] Corsi F, Pirino D, Renó R. Threshold bipower variation and the impact of jumps on volatility forecasting[J]. LEM Papers, 2010, 159(2):276-288.
[9] Patton A J, Sheppard K. Good volatility, bad volatility:Signed jumps and the persistence of volatility[J]. Social Science Electronic Publishing, 2015, 97(3):683-697.
[10] 马锋,魏宇,黄登仕.基于符号收益和跳跃变差的高频波动率模型[J].管理科学学报, 2017, 20(10):31-43.Ma F, Wei Y, Huang D S. Model of high frequency fluctuation ratio based on symbol benefit and jump variation[J]. Journal of Management Science, 2017, 20(10):31-43.
[11] Chen X, Ghysels E. News-good or bad-and its impact on volatility predictions over multiple horizons[J]. Review of Financial Studies, 2011, 24(1):46-81.
[12] Giaccotto C, Krapl A. Good news and bad news about firm-level stock returns of internationally exposed firms[J]. International Review of Finance, 2014, 14(4):523-550.
[13] 张琳,熊海芳. "利好"和"利空"信息对深证成指周收益率波动的冲击研究[J].金融经济, 2016(2):134-136.Zhang L, Xiong H F. The impact research on "good" and "bad" information on the fluctuation index of the weekly yield of Shenzhen stock exchange[J]. Financial Economy, 2016(2):134-136.
[14] 谢海滨,范奎奎,周末.中国股市对利好和利空信息反应的差异研究[J].系统工程理论与实践, 2015, 35(7):1777-1783.Xie H B, Fan K K, Zhou M. Research on the differences of China's stock market's reaction to positive and negative information[J]. Systems Engineering-Theory & Practice, 2015, 35(7):1777-1783.
[15] 戴毓,周德群.燃料油期货市场成交量、持仓量与波动性关系[J].系统工程理论与实践, 2009, 29(12):154-162.Dai Y, Zhou D Q. Trading volume, position and volatility in fuel oil futures market[J]. Systems Engineering-Theory & Practice, 2009, 29(12):154-162.
[16] Barndorff-Nielsen O E, Shephard N. Power and bipower variation with stochastic volatility and jumps[J]. Journal of Financial Econometrics, 2003, 2(2003-W17):1-37.
[17] 朱学红,张宏伟,钟美瑞,等.基于高频数据的中国有色金属期货市场量价关系研究[J].中国管理科学, 2018, 26(6):8-16.Zhu X H, Zhang H W, Zhong M R, et al. Research on the relationship between volume and price of China nonferrous metals futures market based on high frequency data[J]. Chinese Journal of Management Science, 2018, 26(6):8-16.
[18] 王鹏.成交量信息有助于预测中国股票市场的波动吗?[J].数理统计与管理, 2013, 32(2):332-342.Wang P. Does volume information help predict fluctuations in China's stock market?[J]. Journal of Applied Statistics and Management, 2013, 32(2):332-342.
[19] 马金峰,刘善存.沪市A股上市公司定期公告对信息性和流动性交易行为的影响[J]. 系统工程理论与实践, 2013, 33(5):1099-1106.Ma J F, Liu S C. The impact of regular announcements by Shanghai listed companies on informational and liquid trading behaviors[J]. Systems Engineering-Theory & Practice, 2013, 33(5):1099-1106.
[20] 文凤华,刘晓群,唐海如,等.基于LHAR-RV-V模型的中国股市波动性研究[J].管理科学学报, 2012, 15(6):59-67.Wen F H, Liu X Q, Tang H R, et al. Research on the volatility of China's stock market based on LHAR-RV-V model[J]. Journal of Management Science, 2012, 15(6):59-67.
[21] Easley D, Hvidkjaer S, O'Hara M. Is information risk a determinant of asset returns?[J]. The Journal of Finance, 2002, 57(5):2185-2221.
[22] 谢海滨,顾霞,魏云捷.基于信息分解视角的香港股市运行效率研究[J].系统工程理论与实践, 2017, 37(6):1432-1440.Xie H B, Gu X, Wei Y J. Research on the operation efficiency of Hong Kong stock market based on the information decomposition[J]. Systems Engineering-Theory & Practice, 2017, 37(6):1432-1440.
[23] Brocas I, Carrillo J D, Castro M. Second-price common value auctions with uncertainty, private and public information:Experimental evidence[J]. Journal of Behavioral & Experimental Economics, 2017, 67:28-40.
[24] Lundholm R. Price-signal relations in the presence of correlated public and private information[J]. Journal of Accounting Research, 2017, 26(1):107-118.
[25] Duxbury D, Summers B. On perceptions of financial volatility in price sequences[J]. European Journal of Finance, 2018, 24(7-8):521-543.
[26] Green R C, Dan L I, Schürhoff N. Price discovery in illiquid markets:Do financial asset prices rise faster than they fall?[J]. Journal of Finance, 2010, 65(5):1669-1702.
[27] 魏宇.沪深300股指期货的波动率预测模型研究[J].管理科学学报, 2010, 13(2):66-76.Wei Y. Research on volatility forecasting model of Shanghai and Shenzhen 300 stock index futures[J]. Journal of Management Sciences in China, 2010, 13(2):66-76.
[28] 刘莉,万解秋.我国股市与汇市之间关系的再检验——基于滚动时间窗口技术和阈值误差修正模型的证据[J]. 国际金融研究, 2011(7):90-96.Liu L, Wan X Q. Re-examination on the relationship between China's stock market and foreign exchange market-Based on the evidences of rolling time window technology and threshold error correction model[J]. International Financial Research, 2011(7):90-96.
[29] Rossi E, Fantazzini D. Long memory and periodicity in intraday volatility[J]. Journal of Financial Econometrics, 2014, 13(4):922-961.
[30] 陈声利,关涛,李一军.基于跳跃、好坏波动率与百度指数的股指期货波动率预测[J]. 系统工程理论与实践, 2018, 38(2):299-316.Chen S L, Guan T, Li Y J. Forecast of stock index futures volatility based on jump, good and bad volatility and Baidu index[J]. Systems Engineering-Theory & Practice, 2018, 38(2):299-316.
[31] 罗嘉雯,陈浪南.基于TVS-MHAR模型金融市场高频多元波动率的预测[J].系统工程理论与实践, 2018, 38(7):1677-1689.Luo J W, Chen L N. Prediction of high frequency multivariate volatility in financial market based on TVS-MHAR model[J]. Systems Engineering-Theory & Practice, 2018, 38(7):1677-1689.
[32] 魏宇.中国股市波动的异方差模型及其SPA检验[J].系统工程理论与实践, 2007, 27(6):27-35.Wei Y. Heteroscedastic model of China's stock market fluctuation and its SPA test[J]. Systems Engineering-Theory & Practice, 2007, 27(6):27-35.
[33] 黄苒,唐齐鸣. 基于可变强度跳跃-GARCH模型的资产价格跳跃行为分析——以中国上市公司股票市场数据为例[J].中国管理科学, 2014(6):1-9.Huang R, Tang Q M. Analyzing the jump dynamics of asset price in jump-GARCH model with variable intensity[J]. Chinese Journal of Management Science, 2014(6):1-9.

Funding

Humanities and Social Sciences Foundation of MOE of China (18YJA790037); Fundamental Research Funds for the Central Universities (CCNU18ZYTS10, CCNU19TS059)
PDF(1144 KB)

616

Accesses

0

Citation

Detail

Sections
Recommended

/