Public opinion spreading dynamics in a two-layer social network

LI Dandan, MA Jing

Systems Engineering - Theory & Practice ›› 2017, Vol. 37 ›› Issue (10) : 2672-2679.

PDF(1095 KB)
PDF(1095 KB)
Systems Engineering - Theory & Practice ›› 2017, Vol. 37 ›› Issue (10) : 2672-2679. DOI: 10.12011/1000-6788(2017)10-2672-08

Public opinion spreading dynamics in a two-layer social network

  • LI Dandan, MA Jing
Author information +
History +

Abstract

This paper constructed a two-layer social network model and studied the public opinion spreading process. The model consists of two layers of networks with one layer is online social network and the other is offline social network. Through theoretical calculation we draw the density of spreaders in steady state, and find that the spreading threshold in two-layer network is larger than in online social network, but smaller than that in offline network. Further, through numerical simulations we find that the two-layer network could enhance the spreading speed and expand the spreading scale under the action of online social network. Besides, the studies about the effect of spreading rate on the density of spreader show that the spreading rate in one layer only affects the spreading process within the same layer but almost have no effect on the spreading process in the other layer, and the number of spreaders that transfers from offline social network is less effective than that from online social network.

Key words

public opinion spreading / online social network / offline contact network / spreading dynamics

Cite this article

Download Citations
LI Dandan , MA Jing. Public opinion spreading dynamics in a two-layer social network. Systems Engineering - Theory & Practice, 2017, 37(10): 2672-2679 https://doi.org/10.12011/1000-6788(2017)10-2672-08

References

[1] Scott J. Social network analysis a handbook[M]. London:Sage publications, 2000.
[2] Daley D J, Kendall D G. Epidemics and rumours[J]. Nature, 1964, 204:1118.
[3] Newman M, Forest S, Balthrop J. Email networks and the spread of computer viruses[J]. Physical Review E, 2002, 66(3):035101.
[4] Csanyi G, Szendroi B. Structure of a large social network[J]. Physical Review E, 2004, 69(3):036131.
[5] Zanette D H, Argentina R N. Critical behavior of propagation on small-word networks[J]. Physical Review E, 2001, 64(5):050901R.
[6] Zanette D H. Dynamics of rumor propagation on small word networks[J]. Physical Review E, 2002, 65(4):041908.
[7] 潘灶烽, 汪小帆, 李翔. 可变聚类系数无标度网络上的谣言传播仿真研究[J]. 系统仿真学报, 2006, 18(8):2346-2348. Pan Z F, Wang X F, Li X. Simulation investigation on rumor spreading on scale-free network with tunable clustering[J]. Journal of System Simulation, 2006, 18(8):2346-2348.
[8] 赵来军, 吴盼. 考虑传播率和移出率变化的谣言传播规律研究[J]. 上海理工大学学报, 2014, 36(4):345-350.Zhao L J, Wu P. Rumor spreading model with variable spreading and removal rate[J]. Journal of University of Shanghai for Science and Technology, 2014, 36(4):345-350.
[9] 陈波, 于泠, 刘君亭, 等. 泛在媒体环境下的网络舆情传播控制模型[J]. 系统工程理论与实践, 2011, 31(11):2140-2150.Chen B, Yu L, Liu J T, et al. Dissemination and control model of internet public opinion in the ubiquitous media environments[J]. Systems Engineering-Theory & Practice, 2011, 31(11):2140-2150.
[10] 苏创, 彭锦, 李圣国. 基于不确定微分方程的网络舆情传播模型研究[J]. 系统工程理论与实践, 2015, 35(12):3201-3209.Su C, Peng J, Li S G. The internet public opinion propagation model via uncertain differential equation[J]. Systems Engineering-Theory & Practice, 2015, 35(12):3201-3209.
[11] 宋彪, 朱建明, 黄启发. 基于群集动力学和演化博弈论的网络舆情疏导模型[J]. 系统工程理论与实践, 2014, 34(11):2984-2994.Song B, Zhu J M, Huang Q F. The internet public opinion grooming model based on cluster dynamics and evolutionary game theory[J]. Systems Engineering-Theory & Practice, 2014, 34(11):2984-2994.
[12] 刘怡君, 李倩倩, 田儒雅, 等. 基于超网络的社会舆论形成及应用研究[J]. 中国科学院院刊, 2012, 27(5):560-568.Liu Y J, Li Q Q, Tian R Y, et al. Formation and application of public opinion based on super network analysis[J]. Bulletin of Chinese Academy of Sciences, 2012, 27(5):560-568.
[13] Kenett D Y, Perc M, Boccaletti S. Networks of networks:An introduction[J]. Chaos, Solitons & Fractals, 2015, 80:1-6.
[14] Lee K M, Min B, Goh K. Towards real-world complexity:An introduction to multiplex networks[J]. The European Physical Journal B, 2015, 88(48):1-20.
[15] Liu M, Li D Q, Qin P J, et al. Epidemics in interconnected small-world networks[J]. PloS One, 2015, 10(3):0120701.
[16] Zhu G H, Fu X C, Tang Q G, et al. Mean-field modeling approach for understanding epidemic dynamics in interconnected networks[J]. Chaos, Solitons & Fractals, 2015, 80:117-124.
[17] Li Z F, Yan F H, Jiang Y C. Cross-layers cascade in multiplex networks[J]. Autonomous Agent and Multi-Agent Systems, 2015, 29:1186-1215.
[18] Granell C, Gomez S, Arenas A. Dynamical interplay between awareness and epidemic spreading in multiplex networks[J]. Physical Review Letters, 2013, 111(12):128701.
[19] Granell C, Gomez S, Arenas A. Competing spreading process on multiplex networks:Awareness and epidemics[J]. Physical Review E, 2014, 90(1):012808.
[20] Ruan A R, Hui P M, Lin H Q, et al. Risks of an epidemic in a two-layered railway-local area traveling network[J]. The European Physical Journal B, 2013, 86(13):1-8.
[21] Yagan O, Qian D J, Zhang J S, et al. Conjoining speeds up information diffusion in overlaying social-physical networks[J]. IEEE Journal on Selected Areas in Communications, 2013, 31(6):1038-1048.
[22] Buono C, Alvarez-Zuzek L G, Macri P A, et al. Epidemics in partially overlapped multiplex networks[J]. PloS One, 2014, 9(7):e0104373.
[23] Alvarez-Zuzek L G, Stanley H E, Brauntein L A. Epidemic model with isolation in multilayer networks[J]. Scientific Reports, 2015, 5(12):12151.
[24] Salathe M, Kazandjieva M, Lee J W, et al. A high-resolution human contact network for infectious disease transmission[C]//Proceedings of the National Academy of Science, 2010, 107(51):22020-22025.
[25] Li D D, Ma J, Tian Z H, et al. An evolutionary game for the diffusion of rumor in complex networks[J]. Physica A, 2015, 433:51-58.
[26] Li D Q, Qin P J, Wang H J, et al. Epidemics on interconnected lattices[J]. Europhysics Letters, 2014, 105:68004.
[27] Barabási A L, Albert R. Emergence of scaling in random networks[J]. Science, 1999, 286(5439):509-512.
[28] Nylund K L A, Tihomir M, Bengt O. Deciding on the number of classes in latent class analysis and growth mixture modeling:A Monte Carlo simulation study[J]. Structural Equation Modeling-A Multidisciplinary Journal, 2007, 14(4):535-569.
[29] Doucet A, Godsill S, Andrieu C. On sequential Monte Carlo sampling methods for Bayesian filtering[J]. Statistics and Computing, 2000, 10(3):197-208.
[30] Shah D, Zaman T. Finding rumor sources on random trees[J]. Operations Research, 2016, 64(3):736-755.
[31] Dirk B, Dirk H. The hidden geometry of complex, network-driven contagion phenomena[J]. Science, 2014, 343(6164):1337-1342.

Funding

National Natural Science Foundation of China (71373123); The Key Project of Philosophy and Social Science Research in Colleges and Universities in Jiangsu Province (2015ZDIXM007); Fundamental Research Funds for the Central Universities (NP2016301, NS2015081); The Ministry of Education Research of Youth Fund Projects on Humanities and Social Sciences Research (15YJC630122)
PDF(1095 KB)

821

Accesses

0

Citation

Detail

Sections
Recommended

/