H extension control for active suspension system based on value domains game

WANG Hongbo, SUN Xiaowen, CHEN Wuwei, LIN Shu

Systems Engineering - Theory & Practice ›› 2017, Vol. 37 ›› Issue (9) : 2431-2439.

PDF(1076 KB)
PDF(1076 KB)
Systems Engineering - Theory & Practice ›› 2017, Vol. 37 ›› Issue (9) : 2431-2439. DOI: 10.12011/1000-6788(2017)09-2431-09

H extension control for active suspension system based on value domains game

  • WANG Hongbo, SUN Xiaowen, CHEN Wuwei, LIN Shu
Author information +
History +

Abstract

The model of 7-degree-of-freedom full-vehicle active suspension system was established, and the controller was then designed. On this basis, the characteristic variables was selected, and the three different domains were then divided. Through correlated function calculation, the H extension controller was built. Under different schemes, the classic and extension domains were chosen as players for constructing the game matrices to obtain Nash equilibrium point of value domain division. The fuzzy control rules were utilized to dynamically adjust the classical and extension domains' boundaries to optimize the control performance of suspension H extension control system. The MATLAB/Simulink was utilized to carry out the simulation and the simulation results were then compared. The simulation results show that compared with H control, H extension control could better improve the performance of active suspension system; H extension controller by the value domain game could further improve the control performance of suspension system.

Key words

active suspension / H control / extension control / value domains game

Cite this article

Download Citations
WANG Hongbo , SUN Xiaowen , CHEN Wuwei , LIN Shu. H extension control for active suspension system based on value domains game. Systems Engineering - Theory & Practice, 2017, 37(9): 2431-2439 https://doi.org/10.12011/1000-6788(2017)09-2431-09

References

[1] 杨春燕, 蔡文. 可拓学[M]. 北京:科学出版社, 2014.Yang C Y, Cai W. Extenics[M]. Beijing:Science Press, 2014.
[2] 朱佳俊, 郑建国, 李金兵. 基于粗糙分类的不确定可拓群决策数据挖掘及应用[J]. 控制与决策, 2012, 27(6):850-854.Zhu J J, Zheng J G, Li J B. Rough classification algorithm for uncertain extension group decision-making[J]. Control and Decision, 2012, 27(6):850-854.
[3] Wang Y H, Wan P, Ouyang S, et al. Spectrum handoff method based on extenics for cognitive radio sensor networks[J]. International Journal of Online Engineering, 2016, 12(3):36-41.
[4] Zhou L, Zhang Y, Zhang H. Marketing positioning system designing based on extenics[C]//Ieee/wic/acm International Conferences on Web Intelligence and Intelligent Agent Technology. 2012:257-260.
[5] 施开放, 刁承泰, 孙秀锋. 基于熵权可拓决策模型的重庆三峡库区水土资源承载力评价[J]. 环境科学学报, 2013, 33(2):609-616.Shi K F, Diao C T, Sun X F. Evaluation of soil-water resources carrying capacity based on entropy weight extension decision model in the Three Gorges Reservoir Region of Chongqing[J]. Acta Scientiae Circumstantiae, 2013, 33(2):609-616.
[6] 王明东, 刘宪林, 于继来. 基于灰色预测的可拓控制方法[J]. 控制工程, 2011, 18(1):75-77.Wang M D, Liu X L, Yu J L. Grey-prediction-based extension control strategy[J]. Control Engineering of China, 2011, 18(1):75-77.
[7] 徐圆, 冯晶, 朱群雄. 基于可拓理论的RBF神经网络研究及其应用[J]. 控制与决策, 2011, 26(11):1721-1725.Xu Y, Feng J, Zhu Q X. Research and application of extension theory-based radial basis functionneural network[J]. Control and Decision, 2011, 26(11):1721-1725.
[8] 何斌, 朱学锋. 可拓自适应混杂控制[J]. 控制理论与应用, 2005, 22(2):165-170.He B, Zhu X F. Hybrid extension and adaptive control[J]. Control Theory & Applications, 2005, 22(2):165-170.
[9] 陈无畏, 汪洪波. 基于功能分配的汽车悬架/转向系统可拓控制及稳定性分析[J]. 机械工程学报, 2013, 49(24):67-75.Chen W W, Wang H B. Function allocation based vehicle suspension/steering system extension control and stability analysis[J]. Journal of Mechanical Engineering, 2013, 49(24):67-75.
[10] Elbab H F, Allam E, Hady M A, et al. Performance of active suspension with fuzzy control[J]. SAE Technical Papers, 2009-01-1614.
[11] 唐传茵, 李华, 周炜, 等. 基于遗传算法和神经网络的车辆主动悬架控制技术[J]. 农业机械学报, 2009, 40(2):6-11.Tang C Y, Li H, Zhou W, et al. Control technology of vehicle active suspension based on genetic algorithm and neural network[J]. Transactions of the Chinese Society for Agricultural Machinery, 2009, 40(2):6-11.
[12] 黄昆, 喻凡, 张勇超. 电磁式主动悬架模型预测控制器设计[J]. 上海交通大学学报, 2010(11):1619-1624.Huang K, Yu F, Zhang Y C. Model predictive controller design for electromagnetic active suspension[J]. Journal of Shanghai Jiaotong University, 2010(11):1619-1624.
[13] Sun W, Zhao Z, Gao H. Saturated adaptive robust control for active suspension systems[J]. IEEE Transactions on Industrial Electronics, 2013, 60(9):3889-3896.
[14] Zhou R, Zolotas A, Goodall R. Robust system state estimation for active suspension control in high-speed tilting trains[J]. Vehicle System Dynamics, 2014, 52(sup1):355-369.
[15] Sande TPJVD, Gysen B L J, Besselink I J M, et al. Robust control of an electromagnetic active suspension system:Simulations and measurements[J]. Mechatronics, 2013, 23(2):204-212.
[16] 汪洪波. 汽车主动悬架系统控制器降阶和集成控制研究[D]. 合肥:合肥工业大学, 2006.Wang H B. Study on controller-oeder reduction of vehicle active suspension system and integrated control[D]. Hefei:Hefei University of Technology, 2006.
[17] Wang J. Generalized multi objective control with application to vehicle suspension systems[D]. Leeds:University of Leeds, 2003.
[18] 杨春燕, 蔡文. 可拓集中关联函数的研究进展[J]. 广东工业大学学报, 2012, 29(2):7-14.Yang C Y, Cai W. Recent research process independent functions in extension sets[J]. Journal of Guangdong University of Technology, 2012, 29(2):7-14.
[19] 李帮义. 博弈论及其应用[M]. 北京:机械工业出版社, 2010:1-2.Li B Y. Game theory and its application[M]. Beijing:China Machine Press, 2010:1-2.
[20] 王其东, 姜武华, 陈无畏, 等. 主动悬架和电动助力转向系统机械与控制参数集成优化[J]. 机械工程学报, 2008, 44(8):67-72.Wang Q D, Jiang W H, Chen W W, et al. Simultaneous optimization of mechanical and control parameters for integrated control system of active suspension and electric power steering[J]. Journal of Mechanical Engineering, 2008, 44(8):67-62.
[21] 史明光. 汽车主动悬架系统与电动助力转向的集成鲁棒控制研究[D]. 合肥:合肥工业大学, 2004.Shi M G. Research of synthetic robust control of vehicle active suspension system and electrical power steering[D]. Hefei:Hefei University of Technology, 2004.

Funding

National Natural Science Foundation of China (51305118, 51375131, U1564201); China Postdoctoral Science Foundation (2016M602000); Open Fund of Key Laboratory for New Technology Application of Road Conveyance of Jiangsu Province (BM20082061504)
PDF(1076 KB)

323

Accesses

0

Citation

Detail

Sections
Recommended

/