Method for incentive type variable weight decision making considering decision maker's psychological behavioral character

YU Gaofeng, LI Dengfeng, LIU Wenqi

Systems Engineering - Theory & Practice ›› 2017, Vol. 37 ›› Issue (5) : 1304-1312.

PDF(597 KB)
PDF(597 KB)
Systems Engineering - Theory & Practice ›› 2017, Vol. 37 ›› Issue (5) : 1304-1312. DOI: 10.12011/1000-6788(2017)05-1304-09

Method for incentive type variable weight decision making considering decision maker's psychological behavioral character

  • YU Gaofeng1,4, LI Dengfeng2, LIU Wenqi3
Author information +
History +

Abstract

The incentive variable weight vector is researched. Firstly, a definition of the incentive type variable weight vector considering decision maker' risk attitude is proposed, the state weight vector of this variable weight is discussed, it is proved that incentive variable weight vector is induced by utility function; Secondly, the coefficient of risk aversion of incentive variable weight vector is defined, and the relationships between the coefficient of risk aversion and incentive variable weight vector are discussed; Then, a new method for multi-attribute decision making based on incentive variable weight vector is proposed; Finally, the example shows that the proposed method is correct and effective.

Key words

incentive type variable vector / risk aversion / behavioral character / multi-attribute decision making

Cite this article

Download Citations
YU Gaofeng , LI Dengfeng , LIU Wenqi. Method for incentive type variable weight decision making considering decision maker's psychological behavioral character. Systems Engineering - Theory & Practice, 2017, 37(5): 1304-1312 https://doi.org/10.12011/1000-6788(2017)05-1304-09

References

[1] 汪培庄.模糊集与随机集落影[M].北京:北京师范大学出版社, 1985: 47-59.Wang P Z. Shadow of fuzzy sets and random sets[M]. Bejing: Bejing Normal University Press, 1985: 47-59.
[2] 李洪兴.因素空间理论与知识表示的数学框架(VIII)[J]. 模糊系统与数学, 1995, 9(3): 1-9. Li H X. Factor spaces and mathematical frame of knowledge representation (VIII)[J]. Fuzzy Systems and Mathematical, 1995, 9(3): 1-9.
[3] 李洪兴. 因素空间理论与知识表示的数学框架(IX)[J].模糊系统与数学, 1996, 10(2): 12-19. Li H X. Factor spaces and mathematical frame of knowledge representation (IX)[J]. Fuzzy Systems and Mathematical, 1996, 10(2): 12-19.
[4] 李洪兴.因素空间理论与知识表示的数学框架(X)[J].模糊系统与数学, 1996, 10(4): 110-118. Li H X. Factor spaces and mathematical frame of knowledge representation (X)[J]. Fuzzy Systems and Mathematical, 1996, 10(4): 110-118.
[5] 刘文奇. 均衡函数及其在变权综合中应用[J].系统工程理论与实践, 1998, 18(4): 41-47. Liu W Q. Balanced function and its application for variable weighted synthesizing[J]. Systems Engineering-Theory & Practice, 1998, 18(4): 41-47.
[6] Li H X, Li L X, Wang J Y, et al. Fuzzy decision making based on variable weights[J]. Mathematical and Computer Modeling, 2004, 39: 163-179.
[7] 李德清,谷云东,李洪兴.关于状态变权向量公理化定义的若干结果[J].系统工程理论与实践, 2004, 24(5): 97-102.Li D Q, Gu Y D, Li H X. Results on axiomatic definition of state variable weight vector[J]. Systems Engineering-Theory & Practice, 2004, 24(5): 97-102.
[8] 李德清,郝飞龙.状态变权向量的变权效果[J].系统工程理论与实践, 2009, 29(6): 127-131.Li D Q, Hao F L. Weighted transferring effect of state variable vector[J]. Systems Engineering-Theory & Practice, 2009, 29(6): 127-131.
[9] 李德清, 曾文艺. 变权决策中均衡函数均衡效果[J]. 系统工程理论与实践, 2016, 36(3): 712-718. Li D Q, Zeng W Y. The effectiveness of balance function invariable weights decision making[J]. Systems Engineering-Theory & Practice, 2016, 36(3): 712-718.
[10] 李德清,王加银. 基于语言量词的变权综合决策方法[J].系统工程理论与实践, 2010, 30(11): 1998-2002.Li D Q, Wang J Y. Variable weight average based on linguistic quantifier[J]. Systems Engineering-Theory & Practice, 2010, 30(11): 1998-2002.
[11] 李春好,孙永河,贾艳辉,等.变权层次分析法[J].系统工程理论与实践, 2010, 30(4): 724-731.Li C H, Sun Y H, Jia Y H, et al. Analysis hierarchy pross based variable weights[J]. Systems Engineering-Theory & Practice, 2010, 30(4): 724-731.
[12] 刘文奇.一般变权原理与多目标决策[J].系统工程理论与实践, 2000, 20(3): 1-11.Liu W Q. The ordinary variable weight principle and multi-objective decision-making[J]. Systems Engineering-Theory & Practice, 2000, 20(3): 1-11.
[13] 余高锋, 刘文奇, 李登峰. 基于折衷型变权向量的直觉语言决策方法[J]. 控制与决策, 2015, 30(12): 2233-2240.Yu G F, Liu W Q, Li D F. Compromise type variable weight vector based method intuitionistic linguistic making decision[J]. Control and Decision, 2015, 30(12): 2233-2240.
[14] 余高锋, 刘文奇, 石梦婷. 基于局部变权模型的企业质量信用评价[J]. 管理科学学报, 2015, 18(2): 85-94.Yu G F, Liu W Q, Shi M T. Credit evaluation of enterprise quality based on local variable weight model[J]. Journal of Management Sciences in China, 2015, 18(2): 85-94.
[15] 李德清, 曾文艺. 变权决策中均衡函数均衡效果[J]. 系统工程理论与实践, 2016, 36(3): 712-718. Li D Q, Zeng W Y. The effectiveness of balance function invariable weights decision making[J]. Systems Engineering-Theory & Practice, 2016, 36(3): 712-718.
[16] 刘文奇. 中国公共数据库数据质量控制模型体系及实证[J]. 中国科学: 信息科学, 2014, 44(7): 836-856.Liu W Q. Modeling data quality control system for Chinese public database and its empirical analysis[J]. Science and Information in China, 2014, 44(7): 836-856.
[17] Yager R R. Generalized OWA aggregation operators[J]. Fuzzy Optimization and Decision Making, 2004, 3: 93-107.
[18] Li D F. Multiattribute decision making method based on generalized OWA operators with intuitionistic fuzzy sets[J]. Expert Systems with Applications, 2010, 37: 8673-8678.
[19] Zhao H, Xu Z S, Ni M, et al. Generalized aggregation operators for intuitionistic fuzzy sets[J]. International Journal of Intelligent Systems, 2010, 25: 1-30.
[20] Merigo J M, Casanovas M. The generalized hybrid averaging operator and its application in decision making[J]. Journal of Quantitative Methods for Economics and Business Administration, 2010, 9: 69-84.
[21] Liu P D. Some hamacher aggregation operators based on the interval-valued intuitionistic fuzzy numbers and their application to group decision making[J]. IEEE Transactions on Fuzzy Systems, 2014, 22(1): 83-96.
[22] Yager R R. The power average operator[J]. IEEE Transactions on Systems, Man, and Cybernetics. Part A: Systems and Humans, 2001, 31(6): 724-731.
[23] Xu Z S, Yager R R. Power-geometric operators and their use in group decision making[J]. IEEE Transactions on Fuzzy Systems, 2010, 18(1): 94-105.
[24] Xu Z S. Approaches to multiple attribute group decision making based on intuitionistic fuzzy power aggregation operators[J]. Knowledge-Based Systems, 2011, 24(6): 749-760.
[25] Xu Y J, Wang H M. Approaches based on 2-tuple linguistic power aggregation operators for multiple attribute group decision making under linguistic environment[J]. Applied Soft Computing, 2011, 11(5): 3988-3997.
[26] Zhou L G, Chen H Y, Liu J P. Generalized power aggregation operators and their applications in group decision making[J]. Computers & Industrial Engineering, 2012, 62(4): 989-999.
[27] Xu Y J, Merigo J M, Wang H M. Linguistic power aggregation operators and their application to multiple attribute group decision making[J]. Applied Mathematical Modelling, 2012, 6(11): 5427-5444.

Funding

Key Program of National Natural Science Foundation of China (71231003);National Natural Science Foundation of China (61573173);Social Science Planning Project of Fujian (FJ2016C029);The University Special Foundation of Fujian Province of China (JK2015044)
PDF(597 KB)

Accesses

Citation

Detail

Sections
Recommended

/