Fast resolution of double frequency BDS integer ambiguity realized by improved LAMBDA algorithm

WANG Jianmin, MA Tianming, ZHU Huizhong

Systems Engineering - Theory & Practice ›› 2017, Vol. 37 ›› Issue (3) : 768-772.

PDF(545 KB)
PDF(545 KB)
Systems Engineering - Theory & Practice ›› 2017, Vol. 37 ›› Issue (3) : 768-772. DOI: 10.12011/1000-6788(2017)03-0768-05

Fast resolution of double frequency BDS integer ambiguity realized by improved LAMBDA algorithm

  • WANG Jianmin, MA Tianming, ZHU Huizhong
Author information +
History +

Abstract

Using the BeiDou Navigation Satellite System (BDS) for baseline settlement, the key problem is the correct solution of ambiguity. Using carrier phase observations of BDS to make up wide lane double difference observations, the best effect algorithm of LAMBDA is used to calculate wide lane double difference integer ambiguity. However, the algorithm has the disadvantage of large deviation of ambiguity float solution and large search range. So, the paper put forward to use Tikhonov to improve LAMBDA algorithm, singular value decomposition of the coefficient matrix of the unknown parameters in the wide lane double difference observation equation, replacing the covariance matrix of the LAMBDA algorithm with the decomposition of the covariance matrix and searching for the ambiguity of wide lane double difference, the precision of the float solution of the wide lane double difference integer ambiguity and the accuracy of ambiguity are improved. Deviation average values of ambiguity float solution of improved LAMBDA algorithm were reduced from 1.0829 cycles to 0.0059 cycles, variance values were reduced from 4.0534 cycles to 0.0479 cycles, the accuracy of the degree is raised from 93.52% to 100%.

Key words

BeiDou Navigation Satellite System / double frequency / ambiguity / LAMBDA algorithm

Cite this article

Download Citations
WANG Jianmin , MA Tianming , ZHU Huizhong. Fast resolution of double frequency BDS integer ambiguity realized by improved LAMBDA algorithm. Systems Engineering - Theory & Practice, 2017, 37(3): 768-772 https://doi.org/10.12011/1000-6788(2017)03-0768-05

References

[1] 李征航, 黄劲松. GPS测量与数据处理[M]. 2版, 武汉: 武汉大学出版社, 2005. Li Z H, Huang J S. GPS surveying and data processing[M]. 2nd ed. Wuhan: Wuhan University Press, 2005.
[2] Teunissen P J G. An optimality property of the integer least-squares estimator[J]. Journal of Geodesy, 1999, 73: 587-593.
[3] Frei E, Beutler G. Rapid static positioning based on the fast ambiguity resolution approach "FARA": Theory and first results[J]. Manuscripta Geodaetica, 1990, 15(4): 325-356.
[4] Teunissen P J G. A new method for fast carrier phase ambiguity estimation[C]//Proceedings of the IEEE PLANS'94. Las Vegas, 1994: 562-573.
[5] Teunissen P J G. The least-squares ambiguity decorrelation adjustment: A method for fast GPS integer ambiguity estimation[J]. Journal of Geodesy, 1995, 70(1-2): 65-82.
[6] 王振杰, 欧吉坤, 柳林涛. 单频GPS快速定位中病态问题的解法研究[J]. 测绘学报, 2008, 37(4): 423-428.Wang Z J, Ou J K, Liu L T. Investigation on solutions of ill-conditioned problems in rapid positioning using single frequency GPS receivers[J]. Acta Geodaetica et Cartographic Sinica, 2008, 37(4): 423-428.
[7] 李豹, 许江宁, 曹可劲, 等. 改进LAMBDA算法实现单频GPS整周模糊度快速解算[J]. 中国惯性技术学报, 2013, 21(3): 365-368. Li B, Xu J N, Cao K J, et al. Fast resolution of single frequency GPS integer ambiguiyrealized by improved LAMBDA algorithm[J]. Journal of Chinese Inertial Technology, 2013, 21(3): 365-368.
[8] 高猛, 徐爱功, 祝会忠, 等. 北斗系统短基线解算数据处理方法[J]. 测绘科学, 2015, 40(4): 28-33. Gao M, Xu A G, Zhu H Z, et al. The method of BDS short baseline solution data processing[J]. Science of Surveying and Mapping, 2015, 40(4): 28-33.
[9] 孔令杰, 黄观文. 基于TIKHONOV正则化的短基线单历元模糊度解算方法研究[J]. 大地测量与地球动力学, 2010, 30(2): 148-155.Kong L J, Huang G W. On single epoch ambiguity resolution of short baseline based on TIKHONOV regularization[J]. Journal of Geodesy and Geodynamics, 2010, 30(2): 148-155.
[10] Hofmann-wellenhof B, Lichtenegger H, Wasle E. 全球卫星导航系统: GPS, GLANASS, Galileo 及其他系统[M]. 北京: 测绘出版社, 2009. Hofmann-wellenhof B, Lichtenegger H, Wasle E. Gnss-global navigation satellite systems GPS, GLONASS, Galileo & more[M]. Beijing: Surveying and Mapping Press, 2009.
[11] 汤璞. 中短基线GPS解算中影响精度的因素研究[D]. 郑州: 解放军信息工程大学, 2003.Tang P. Research on the factors of affecting the accuracy for GPS medium and shortbaseline solution[D]. Zhengzhou: PLA Information Engineering University, 2003.
[12] 唐卫明, 邓辰龙, 高丽峰. 北斗单历元基线解算算法研究及初步结果[J]. 武汉大学学报(信息科学版), 2013, 38(8): 897-901. Tang W M, Deng C L, Gao L F. Preliminary results of single epoch baseline solution based on BeiDou navigation satellite system[J]. Geomatics and Information Science of Wuhan University, 2013, 38(8): 897-901.

Funding

National Natural Science Foundation of China (41474020, 41504010)
PDF(545 KB)

483

Accesses

0

Citation

Detail

Sections
Recommended

/