Research on BDI index fluctuation power law distribution features based on the jump time and jump range

YU Fangping, KUANG Haibo

Systems Engineering - Theory & Practice ›› 2017, Vol. 37 ›› Issue (3) : 607-619.

PDF(1619 KB)
PDF(1619 KB)
Systems Engineering - Theory & Practice ›› 2017, Vol. 37 ›› Issue (3) : 607-619. DOI: 10.12011/1000-6788(2017)03-0607-13

Research on BDI index fluctuation power law distribution features based on the jump time and jump range

  • YU Fangping, KUANG Haibo
Author information +
History +

Abstract

The baltic dry index (BDI) index is the international shipping market barometer. BDI index fluctuation power law distribution features are important for further mastering shipping freight characteristics, BDI trends forecasting, shipping decision-making and so on. This paper has a detailed research on 30 years BDI index fluctuation power law distribution features. The main characteristics includes:Firstly, the BDI index power law distribution features are discussed with Pareto, Exponential and Fokker-Planck function for the first time. Secondly, on the basis of jump identify, the jump time and jump range scales BDI index fluctuation power law distribution models are set up, which are transformed into a least square method of linear regression models. Thirdly, empirical analysis on BDI index daily, weekly and monthly growth rates jump time and jump range power law distribution features, results showed that BDI index growth rate distribution has pointed peak, thin tail and fluctuation gathered. Fokker-Planck function fitting BDI index growth rate jump time is more appropriate, Exponential function fitting BDI index growth rate jump range is more appropriate. BDI index growth rate jump time and jump range are has thin tail power law feature, and jump upon and jump down power law features are symmetry.

Key words

BDI index / power law distribution features / jump time / jump range / Fokker-Planck function

Cite this article

Download Citations
YU Fangping , KUANG Haibo. Research on BDI index fluctuation power law distribution features based on the jump time and jump range. Systems Engineering - Theory & Practice, 2017, 37(3): 607-619 https://doi.org/10.12011/1000-6788(2017)03-0607-13

References

[1] Lin F, Sim N C S. Trade, income and the baltic dry index[J]. European Economic Review, 2013, 59: 1-18.
[2] Theodoulidis B, Diaz D. Analysis of the baltic exchange dry index using data mining techniques[C]//2009, SSRN: http://ssrn.com/abstract=2419097, http://dx.doi.org/10.2139/ssrn.2419097.
[3] Geman H, Smith W O. Shipping markets and freight rates: An analysis of the baltic dry index[J]. The Journal of Alternative Investments, 2012, 15(1): 98-109.
[4] Denning K C, Riley W B, DeLooze J P. Baltic freight futures: Random walk or seasonally predictable[J]. International Review of Economics & Finance, 1994, 3(4): 399-428.
[5] Steen K, Roar O. Modelling forward freight rate dynamics empirical evidence from time charter rates[J]. Maritime Policy & Management, 2004, 31(4): 319-335.
[6] Ko B W. A mixed-regime model for dry bulk freight market[J]. The Asian Journal of Shipping and Logistics, 2010, 26(2): 185-204.
[7] Drobetz W, Richter T, Wambach M. Dynamics of time-varying volatility in the dry bulk and tanker freight markets[J]. Applied Financial Economics, 2012(22): 1367-1384.
[8] Gong X X, Lu J. Volatility of forward price in dry shipping market[J]. Procedia-Social and Behavioral Sciences, 2013(96): 1528-1537.
[9] Kavussanos M G, Visvikis I D, Batchelor R A. Over-the-counter forward contracts and spot price volatility in shipping[J]. Transportation Research Part E, 2004(40): 273-296.
[10] Chen S, Meersman H, Voorde E. Dynamic interrelationships in returns and volatilities between Capesize and Panamax markets[J]. Maritime Economics & Logistics, 2010, 12: 65-90.
[11] Xu J J, Yip T L, Marlow P B. The dynamics between freight volatility and fleet size growth in dry bulk shipping markets[J]. Transportation Research Part E, 2011(47): 983-991.
[12] Alizadeh A H, Nomikos N K. Dynamics of the terms structure and volatility of shipping freight rates[J]. Journal of Transport Economics and Policy, 2011, 45(1): 105-128.
[13] Alizadeh A H. Trading volume and volatility in the shipping forward freight market[J]. Transportation Research Part E, 2013(49): 250-265.
[14] 胡海波,王林. 幂律分布研究简史[J]. 物理, 2005, 34(12): 889-896.Hu H B, Wang L. A brief history of power law distributions[J]. Physics, 2005, 34(12): 889-896.
[15] Newman M E J. Power laws, Pareto distributions and Zipf's law[J]. Contemporary Physics, 2005, 46(5): 323-351.
[16] 郝婧宇, 倪长健, 朱杰. 四川地区降水幂律指数研究[J]. 高原山地气象研究, 2016, 36(1): 44-51.Hao J Y, Ni C J, Zhu J. Analysis of the power-law exponent of precipitation in Sichuan[J]. Plateau and Mountain Meteorology Research, 2016, 36(1): 44-51.
[17] 黄新力. 针对节点度幂律分布对等覆盖网络的分散式目标免疫[J]. 系统工程理论与实践, 2008, 28(11): 135-141. Huang X L. A novel approach to local vaccination of P2P networks with power-law node degree distributions[J]. Systems Engineering-Theory & Practice, 2008, 28(11): 135-141.
[18] 隋聪, 王宗尧. 银行间网络的无标度特征[J]. 管理科学学报, 2015, 18(12): 18-26.Sui C, Wang Z Y. Interbank network scale-free characteristics[J]. Journal of Management Sciences in China, 2015, 18(12): 18-26.
[19] 张宇, 张建玮, 王正行. 金融市场中幂律分布的经验和理论研究进展——经济物理学研究的一个前沿[J]. 物理, 2004, 33(10): 734-739.Zhang Y, Zhang J W, Wang Z X. Recent progress on power-law distributions in financial market fluctuations[J]. Physics, 2004, 33(10): 734-739.
[20] 曹宏铎, 李旲, 何智. 股票价格运行的幂律特征及幂律跳跃扩散模型[J]. 管理科学学报, 2011, 14(9): 46-59.Cao H D, Li Y, He Z. Stock pricing model: Jump diffusion model of power law[J]. Journal of Management Sciences in China, 2011, 14(9): 46-59.
[21] 陈国进, 许秀, 赵向琴. 罕见灾难风险和股市增长——基于我国个股横截面尾部风险的实证分析[J]. 系统工程理论与实践, 2015, 35(9): 2186-2199.Chen G J, Xu X, Zhao X Q. Rare disaster risk and asset return-Evidence from tail risk in Chinese stock market[J]. Systems Engineering-Theory & Practice, 2015, 35(9): 2186-2199.
[22] Lux T, Alfarano S. Financial power laws: Empirical evidence, models, and mechanisms[J]. Chaos, Solitons & Fractals, 2016, 88: 3-18.
[23] 彭代彦, 彭旭辉. 中国城市地价波动的幂律特性[J]. 中国土地科学, 2016, 30(1): 61-67.Peng D Y, Peng X H. Power laws features of land price fluctuation in Chinese cities[J]. China Land Sciences, 2016, 30(1): 61-67.
[24] Benjamin R A. On the role of skewness, kurtosis, and the location and scale condition in a Sharpe ratio performance evaluation setting[J]. International Journal of Theoretical & Applied Finance, 2015, 18(6): 1-13.
[25] Daníelsson J, Vries C G D. Beyond the sample: Extreme quantile and probability estimation[J]. Tinbergen Institute Discussion Papers, 1997.
[26] Gabaix X, Gopikrishnan P, Plerou V, et al. A theory of power law distributions in financial market fluctuations[J]. Nature, 2003, 42(3): 267-270.
[27] Clauset A, Shalizi C R, Newman M E J. Power law distributions in empirical data[J]. SIAM Review, 2009, 51(4): 661-703.
[28] Malevergne Y, Pisarenko V, Sornette D. Empirical distributions of stock returns: Between the stretched exponential and the power law[J]. Quantitative Finance, 2007, 5(4): 379-401.
[29] Sornette D. Fokker-planck equation of distributions of financial returns and power laws[J]. Physica A, 2001(290): 211-217.
[30] Hinloopen J, Marrewijk C V. Power laws and comparative advantage[J]. Applied Economics, 2012, 44: 1483-1507.

Funding

National Natural Science Foundation of China (71273037); Transportation Soft Science Project of Ministry of Transport (2013-322-225-240); Program for Innovative Research Team in University of Liaoning (LT2013011); Program for Changjiang Scholars and Innovative Research Team (IRT13048)
PDF(1619 KB)

411

Accesses

0

Citation

Detail

Sections
Recommended

/