Tourism prediction using web search data based on CLSI-EMD-BP

LI Xiaoxuan, LÜ Benfu, ZENG Pengzhi, LIU Jinxuan

Systems Engineering - Theory & Practice ›› 2017, Vol. 37 ›› Issue (1) : 106-118.

PDF(1223 KB)
PDF(1223 KB)
Systems Engineering - Theory & Practice ›› 2017, Vol. 37 ›› Issue (1) : 106-118. DOI: 10.12011/1000-6788(2017)01-0106-13

Tourism prediction using web search data based on CLSI-EMD-BP

  • LI Xiaoxuan1,2, LÜ Benfu1,2, ZENG Pengzhi1,2, LIU Jinxuan1,2
Author information +
History +

Abstract

Predicting tourism traffic accurately plays an important role in making policies for tourist administration. It helps to distribute the resources reasonably and avoid the tourism congestions. To improve the tourism prediction accuracy, this study considered the noise interference and proposed a forecast model of CLSI-EMD-BP using web search data. This model firstly applied CLSI to combine the web search data into a search index, then it denoised the series with EMD. EMD extracted the high frequency noise from the original series. The low frequency series of search index would be used to predict the low frequency tourism series. Taking Jiuzhaigou as an example, this study trained the model and predicted the next 22 weeks tourism arrivals. The conclusion demonstrated that the forecast error of CLSI-EMD-BP model is lower remarkably than the baselines of time series model, the web search data model and the BP network model. This revealed that nosing processing is necessary as well as CLSI-EMD-BP forecast model can improve the prediction accuracy.

Key words

web search data / tourism prediction / composite leading search index (CLSI) / empirical mode decomposition (EMD) / BP network

Cite this article

Download Citations
LI Xiaoxuan, LÜ Benfu, ZENG Pengzhi, LIU Jinxuan. Tourism prediction using web search data based on CLSI-EMD-BP. Systems Engineering - Theory & Practice, 2017, 37(1): 106-118 https://doi.org/10.12011/1000-6788(2017)01-0106-13

References

[1] 王炼, 贾建民. 基于网络信息搜索的旅游需求预测——来自黄金周的证据[J]. 系统管理学报, 2014, 23(3): 345-350.Wang L, Jia J M. Forecasting of tourism demand in the golden week with online information search[J]. Journal of Systems & Management, 2014, 23(3): 345-350.
[2] Ho C J, Liu Y P. An exploratory investigation of web-based tourist information search behavior[J]. Asia Pacific Journal of Tourism Research, 2005, 10(4): 351-360.
[3] Ginsberg J, Mohebbi M H, Patel R S, et al. Detecting influenza epidemics using search engine query data[J]. Nature, 2009, 457(7232): 1012-1014.
[4] Huang N E, Shen Z, Long S R, et al. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis[C]//Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, The Royal Society, 1998, 454(1971): 903-995.
[5] 王文波, 费浦生, 羿旭明. 基于 EMD 与神经网络的中国股票市场预测[J]. 系统工程理论与实践, 2010, 30(6): 1027-1033.Wang W B, Fei P S, Yi X M. Prediction of China stock market based on EMD and neural network[J]. Systems Engineering-Theory & Practice, 2010, 30(6): 1027-1033.
[6] Chen C F, Lai M C, Yeh C C. Forecasting tourism demand based on empirical mode decomposition and neural network[J]. Knowledge-Based Systems, 2012, 26: 281-287.
[7] Wang W, Chau K, Qiu L, et al. Improving forecasting accuracy of medium and long-term runoff using artificial neural network based on EEMD decomposition[J]. Environmental Research, 2015: 1-9.
[8] Pai P F, Hong W C. Forecasting regional electricity load based on recurrent support vector machines with genetic algorithms[J]. Electric Power Systems Research, 2005, 74(3): 417-425.
[9] Goh C, Law R. The methodological progress of tourism demand forecasting: A review of related literature[J]. Journal of Travel and Tourism Marketing, 2011, 28(3): 296-317.
[10] Goh C, Law R. Modeling and forecasting tourism demand for arrivals with stochastic nonstationary seasonality and intervention[J]. Tourism Management, 2002, 23(5): 499-510.
[11] Chan F, Lim C, McAleer M. Modelling multivariate international tourism demand and volatility[J]. Tourism Management, 2005, 26(3): 459-471.
[12] Chaitip P, Chaiboonsri C. Forecasting with X-12-ARIMA and ARFIMA: International tourist arrivals to India[J]. Annals of the University of Petrosani Economics, 2009, 9(1): 107-128.
[13] Song H, Wong K K F. Tourism demand modeling: A time-varying parameter approach[J]. Journal of Travel Research, 2003, 42(1): 57-64.
[14] Li G, Wong K K F, Song H, et al. Tourism demand forecasting: A time varying parameter error correction model[J]. Journal of Travel Research, 2006, 45(2): 175-185.
[15] Song H, Li G, Witt S F, et al. Forecasting tourist arrivals using time-varying parameter structural time series models[J]. International Journal of Forecasting, 2011, 27(3): 855-869.
[16] Hong W C. The application of support vector machines to forecast tourist arrivals in Barbados: An empirical study[J]. International Journal of Management, 2006, 23(2): 375-385.
[17] Pai P F, Lin K P, Lin C S, et al. Time series forecasting by a seasonal support vector regression model[J]. Expert Systems with Applications, 2010, 37(6): 4261-4265.
[18] Chen K Y, Wang C H. Support vector regression with genetic algorithms in forecasting tourism demand[J]. Tourism Management, 2007, 28(1): 215-226.
[19] 梁昌勇, 马银超, 陈荣, 等. 基于 SVR-ARMA 组合模型的日旅游需求预测[J]. 管理工程学报, 2015(1): 122-127.Liang C Y, Ma Y C, Chen R, et al. The daily forecasting tourism demand based on SVR-ARMA combination model[J]. Journal of Industrial Engineering & Engineering Management, 2015(1): 122-127.
[20] 宋双杰, 曹晖, 杨坤. 投资者关注与 IPO 异象——来自网络搜索量的经验证据[J]. 经济研究, 2011(S1): 145-155.Song S J, Cao H, Yang K. Investor attention and IPO anomalies-Evidence from Google trend volume[J]. Economic Research Journal, 2011(s1): 145-155.
[21] Takeda F, Wakao T. Google search intensity and its relationship with returns and trading volume of Japanese stocks[J]. Pacific-Basin Finance Journal, 2014, 27: 1-18.
[22] Choi H, Varian H. Predicting the present with Google trends[J]. Economic Record, 2012, 88(s1): 2-9.
[23] Bangwayo-Skeete P F, Skeete R W. Can Google data improve the forecasting performance of tourist arrivals? Mixed-data sampling approach[J]. Tourism Management, 2015, 46: 454-464.
[24] Yang X, Pan B, Evans J A, et al. Forecasting Chinese tourist volume with search engine data[J]. Tourism Management, 2015, 46: 386-397.
[25] Vaughan L, Chen Y. Data mining from web search queries: A comparison of Google trends and Baidu index[J]. Journal of the Association for Information Science and Technology, 2015, 66(1): 13-22.
[26] 王炼, 贾建民. 基于网络搜索的票房预测模型——来自中国电影市场的证据[J]. 系统工程理论与实践, 2014, 34(12): 3079-3090.Wang L, Jia J M. Forecasting box office performance based on online search: Evidence from Chinese movie industry[J]. Systems Engineering-Theory & Practice, 2014, 34(12): 3079-3090.
[27] Zhang L, Zhang L, Teng W, et al. Based on information fusion technique with data mining in the application of finance early-warning[J]. Procedia Computer Science, 2013, 17: 695-703.
[28] Chen C F, Lai M C, Yeh C C. Forecasting tourism demand based on empirical mode decomposition and neural network[J]. Knowledge-Based Systems, 2012, 26: 281-287.
[29] Yao X, Sun X, Yang Y, et al. Features extraction and reconstruction of country risk based on empirical EMD[J]. Procedia Computer Science, 2014, 31: 265-272.
[30] Yu L A, Wang S Y, Lai K K. Forecasting crude oil price with an EMD-based neural network ensemble learning paradigm[J]. Energy Economics, 2008, 30(5): 2623-2635.
[31] Xiong T, Bao Y, Hu Z. Interval forecasting of electricity demand: A novel bivariate EMD-based support vector regression modeling framework[J]. International Journal of Electrical Power and Energy Systems, 2014, 63: 353-362.
[32] Lin C S, Chiu S H, Lin T Y. Empirical mode decomposition-based least squares support vector regression for foreign exchange rate forecasting[J]. Economic Modelling, 2012, 29(6): 2583-2590.
[33] Premanode B, Toumazou C. Improving prediction of exchange rates using differential EMD[J]. Expert Systems with Applications, 2013, 40(1): 377-384.
[34] Wang J, Zhang W, Li Y, et al. Forecasting wind speed using empirical mode decomposition and Elman neural network[J]. Applied Soft Computing, 2014, 23: 452-459.
[35] Cheng C H, Wei L Y. A novel time-series model based on empirical mode decomposition for forecasting TAIEX[J]. Economic Modelling, 2014, 36: 136-141.
[36] Chen C F, Lai M C, Yeh C C. Forecasting tourism demand based on empirical mode decomposition and neural network[J]. Knowledge-Based Systems, 2012, 26: 281-287.
[37] Liu Y, Chen Y, Wu S, et al. Composite leading search index: A preprocessing method of internet search data for stock trends prediction[J]. Annals of Operations Research, 2015: 1-18.
[38] 任乐, 崔东佳. 基于网络搜索数据的国内旅游客流量预测研究——以北京市国内旅游客流量为例[J]. 经济问题探索, 2014(4): 67-73.
[39] 王博永, 杨欣. 基于网络搜索的房地产政策调控效果研究[J]. 管理评论, 2014(9): 78-88.Wang B Y, Yang X. A study of real estate market macro-control policies' effectiveness based on web search data[J]. Management Review, 2014(9): 78-88.

Funding

National Natural Science Foundation of China (71202115,71202155,71172199)
PDF(1223 KB)

420

Accesses

0

Citation

Detail

Sections
Recommended

/