Max-npv project scheduling problem considering robustness

CUI Nanfang, LIANG Yangyang, ZHAO Yan

Systems Engineering - Theory & Practice ›› 2016, Vol. 36 ›› Issue (6) : 1462-1471.

PDF(1116 KB)
PDF(1116 KB)
Systems Engineering - Theory & Practice ›› 2016, Vol. 36 ›› Issue (6) : 1462-1471. DOI: 10.12011/1000-6788(2016)06-1462-10

Max-npv project scheduling problem considering robustness

  • CUI Nanfang1, LIANG Yangyang1, ZHAO Yan2
Author information +
History +

Abstract

The cash flow criticality (CFC) scattered buffer procedure is introduced to cope with the adverse effects on the net present value (NPV) of project, which are caused by uncertainties in complicated environment. Through inserting time buffer in front of activities with greater cash flow weight, a robust model is constructed to minimize the loss of NPV, as well as the payment plan of project is implemented as planned as well as possible. In order to verify the effectiveness of the method, the Max-npv non-robust schedule is generated by simulated annealing (SA) to provide the comparable results. Simulation experimental results show that the method of CFC is not only superior to SA in the indictors of NPV in the low, medium and high degree of uncertainty, but it also has better robustness.

Key words

net present value / robust project scheduling / scattered buffer / cash flow criticality

Cite this article

Download Citations
CUI Nanfang , LIANG Yangyang , ZHAO Yan. Max-npv project scheduling problem considering robustness. Systems Engineering - Theory & Practice, 2016, 36(6): 1462-1471 https://doi.org/10.12011/1000-6788(2016)06-1462-10

References

[1] Russell A H. Cash flows in networks[J]. Management Science, 1970, 16(5): 357-373.
[2] 何正文, 徐渝,朱少英. Max-npv项目进度问题研究评述[J]. 管理工程学报, 2005, 19(4): 60-63. He Z W, Xu Y, Zhu S Y. A survey of Max-npv project scheduling problems[J]. Journal of Industrial Engineering and Engineering Management, 2005, 19(4): 60-63.
[3] Vanhoucke M, Demeulemeester E, Herroelen W. Progress payments in project scheduling problems[J]. European Journal of Operational Research, 2003, 148(3): 604-620.
[4] He Z W, Wang N, Jia T, et al. Simulated annealing and tabu search for multi-mode project payment scheduling[J]. European Journal of Operational Research, 2008(3): 688-696.
[5] Zhu G, Bard J, Yu G. Disruption management for resource constrained project scheduling[J]. Journal of the Operation Research Society, 2005, 56(4): 365-381.
[6] Buss A H, Rosenblatt M J. Activity delay in stochastic project networks[J]. Operations Research, 1997, 45(1): 126-139.
[7] 何正文, 徐渝. 工程项目支付进度优化:一个案例研究[J]. 管理工程学报, 2008, 22(1): 67-71. He Z W, Xu Y. Optimization of engineering project payment scheduling: A case study[J]. Journal of Industrial Engineering and Engineering Management, 2008, 22(1): 67-71.
[8] Van de Vonder S, Demeulemeester E, Herroelen W, et al. The trade-off between stability and make span in resource-constrained project scheduling[J]. International Journal of Production Research 2006, 44(2): 215-236.
[9] Baroum S M, Patterson J H. The development of cash flow weight procedures for maximizing the net present value of a project[J]. Journal of Operation Management, 1996, 14(3): 209-227.
[10] Al-Fawzan M A, Haouari M. A bi-objective model for robust resource-constrained project scheduling[J]. International Journal of Production Economics, 2005, 92(2): 175-187.
[11] He Z W, Liu R, Jia T. Meta heuristics for multi-mode capital-constrained project payment scheduling[J]. European Journal of Operational Research, 2012, 223(3): 605-613.
[12] Demeulemeester E, Herroelen W. A branch-and-bound procedure for the multiple resource-constrained project scheduling problem[J]. Management Science, 1992, 38(12): 1803-1818.
[13] Bouleimen K, Lecocq H. A new efficient simulated annealing algorithm for the resource-constrained project scheduling problem and its multiple mode version[J]. European Journal of Operational Research, 2003, 149(2): 268-281.
[14] Klein R. Bidirectional planning: Improving priority rule-based heuristics for scheduling resource constrained projects[J]. European Journal of Operational Research, 2000, 127(3): 619-638.
[15] Tukel O I, Rom W O, Eksioglu S D. An investigation of buffer sizing techniques in critical chain scheduling[J]. European Journal of Operational Research, 2006, 172(2): 401-416.
[16] Deblaere F, Demeulemeester E, Herroelen W, et al. Robust resource allocation decisions in resource-constrained projects[J]. Decision Sciences, 2007, 38(1): 5-37.
[17] 何正文, 刘人境, 徐渝. 基于不同支付条件的现金流均衡项目调度优化[J]. 管理科学学报, 2011, 14(8): 75-85. He Z W, Liu R J, Xu Y. Cash flow balanced project scheduling optimization based on different payment conditions[J]. Journal of Management Sciences, 2011, 14(8): 75-85.
[18] 何正文, 刘人境, 徐渝. 现金流平衡约束下的Max-npv项目调度[J]. 系统工程理论与实践, 2009, 29(3): 132-140. He Z W, Liu R J, Xu Y. Max-npv project scheduling problems with the cash flow balance constraints[J]. Systems Engineering-Theory & Practice, 2009, 29(3): 132-140.
[19] Herroelen W S, Leus R. The construction of stable project baseline schedules[J]. European Journal of Operational Research, 2004, 156(3): 550-565.
[20] Herroelen W, Leus R. On the merits and pitfalls of critical chain scheduling[J]. Journal of Operations Management, 2001, 19(5): 559-577.
[21] Van de Vonder S, Demeulemeester E, Herroelen W, et al. The use of buffers in project management: The trade-off between stability and makespan[J]. International Journal of Production Economics, 2005, 97(2): 227-240.

Funding

National Natural Science Foundation of China (71271097)
PDF(1116 KB)

297

Accesses

0

Citation

Detail

Sections
Recommended

/