Set pair weight Markov chain model based on sequence clustering method for dynamically predicting annual precipitation

HOU Zeyu, LU Wenxi, SONG Wenbo, LI Mengnan, CHEN Mo

Systems Engineering - Theory & Practice ›› 2016, Vol. 36 ›› Issue (4) : 1066-1071.

PDF(735 KB)
PDF(735 KB)
Systems Engineering - Theory & Practice ›› 2016, Vol. 36 ›› Issue (4) : 1066-1071. DOI: 10.12011/1000-6788(2016)04-1066-06

Set pair weight Markov chain model based on sequence clustering method for dynamically predicting annual precipitation

  • HOU Zeyu1,2, LU Wenxi1,2, SONG Wenbo1,2, LI Mengnan3, CHEN Mo1,2
Author information +
History +

Abstract

A set pair weight Markov chain model based on sequence clustering method for predicting annual precipitation was established in this paper and applied to forecast the precipitation of Baicheng station (Jilin Province) during 2008-2010. It was an improvement of the traditional method by combining sequence clustering method, set pair analysis and Markov chain. Research results show that the improved method make the partition of precipitation grade interval more reasonable. In addition, it can effectively improve the concentration of prediction probability and the prediction accuracy. The measured values all lie in the prediction interval. In conclusion, the method is with high practical application value. As an attempt of the improvement of precipitation prediction model, its prediction effect is satisfactory.

Key words

precipitation prediction / sequence clustering / set pair analysis / Markov chain

Cite this article

Download Citations
HOU Zeyu , LU Wenxi , SONG Wenbo , LI Mengnan , CHEN Mo. Set pair weight Markov chain model based on sequence clustering method for dynamically predicting annual precipitation. Systems Engineering - Theory & Practice, 2016, 36(4): 1066-1071 https://doi.org/10.12011/1000-6788(2016)04-1066-06

References

[1] 范钟秀. 中长期水文预报[M]. 南京:河海大学出版社, 1999.
[2] Dorea C C Y, Pereira A G C. A note on a variation of Doeblin's condition for uniform ergodicity of Markov chains[J]. Acta Mathematica Hungarica, 2006, 110(4):287-292.
[3] Gokhale S S, Lyu M R, Trivedi K S. Analysis of software fault removal policies using a non-homogeneous continuous time Markov chain[J]. Software Quality Journal, 2004, 12(3):211-230.
[4] 曲武, 卢文喜, 王喜华,等. Monte-carlo与NNBR模型结合在年降水量预测中的应用[J]. 干旱区研究, 2012, 29(1):55-58.Qu W, Lu W X, Wang X H, et al. Application of Monte-carlo and NNBR combination in predicting annual precipitation[J]. Arid Zone Research, 2012, 29(1):55-58.
[5] 冯耀龙, 韩文秀. 权马尔可夫链在河流丰枯状况预测中的应用[J]. 系统工程理论与实践, 1999, 19(10):89-93. Feng Y L, Han W X. The application of weighted Markov-chain to the prediction of river runoff state[J]. Systems Engineering——Theory & Practice, 1999, 19(10):89-93.
[6] 夏乐天, 朱元甡. 马尔可夫链预测方法的统计试验研究[J]. 水利学报, 2007(S1):372-378.Xia L T, Zhu Y S. Study on statistical experiments of Markov chain prediction methods[J]. Journal of Hydraulic Engineering, 2007(S1):372-378.
[7] 孙才志, 张戈, 林学钰.加权马尔可夫链在降水丰枯状况预测中的应用[J]. 系统工程理论与实践, 2003, 23(4):100-105.Sun C Z, Zhang G, Lin X Y. Model of Markov chain with weights and its application in predicting the precipitation state[J]. Systems Engineering——Theory & Practice, 2003, 23(4):100-105.
[8] 夏乐天, 朱元甡, 沈永梅.加权马尔可夫链在降水状况预测中的应用[J]. 水利水电科技进展, 2006, 26(6):20-27.Xia L T, Zhu Y S, Shen Y M. Application of weighted Markov chain to prediction of precipitation[J]. Advances in Science and Technology of Water Resources, 2006, 26(6):20-27.
[9] 王艳.最优分割算法的计算机程序实现与武汉市洪涝灾害预测[D]. 武汉:华中师范大学, 2007.Wang Y. The realization of the optimal partition method algorithm and its application[D]. Wuhan:Central China Normal University, 2007.
[10] 高惠璇.应用多元统计分析[M]. 北京:北京大学出版社, 2005:253-259.
[11] Wang W S, Jin J L, Ding J, et al. A new approach to water resources system assessment——Set pair analysis method[J]. Science in China Series E:Technological Sciences, 2009, 52(10):3017-3023.
[12] 赵克勤. 集对分析及其初步应用[M]. 杭州:浙江科学技术出版社, 2000.
[13] 蒋尚明. 集对分析在水资源不确定性分析中的应用[D]. 合肥:合肥工业大学, 2010.Jiang S M. Applications of set pair analysis to uncertainty analysis of water resources[D]. Hefei:Hefei University of Technology, 2010.

Funding

China Geological Survey Project (1212011140027, 12120115032801);Jilin Foundation for Development of Science and Technology (20100215)
PDF(735 KB)

409

Accesses

0

Citation

Detail

Sections
Recommended

/