Resource allocation among decision making units with fuzzy data——Based on DEA and Shapley value

YANG Zhihua, ZHANG Qianwei

Systems Engineering - Theory & Practice ›› 2016, Vol. 36 ›› Issue (3) : 719-725.

PDF(525 KB)
PDF(525 KB)
Systems Engineering - Theory & Practice ›› 2016, Vol. 36 ›› Issue (3) : 719-725. DOI: 10.12011/1000-6788(2016)03-0719-07

Resource allocation among decision making units with fuzzy data——Based on DEA and Shapley value

  • YANG Zhihua1, ZHANG Qianwei2
Author information +
History +

Abstract

This paper proposes a method on resource allocation among decision making units with fuzzy inputs and (or) outputs. Defining DEA efficiency value of each DMU (decision making unit) with fuzzy data in coalition S as a characteristic function, we propose the modified Shapley value so as to give an equitable way of resource allocation. In addition, the proposed approach is illustrated through a numerical example.

Key words

fuzzy data / resource allocation / DEA / Shapley value / modified Shapley value

Cite this article

Download Citations
YANG Zhihua , ZHANG Qianwei. Resource allocation among decision making units with fuzzy data——Based on DEA and Shapley value. Systems Engineering - Theory & Practice, 2016, 36(3): 719-725 https://doi.org/10.12011/1000-6788(2016)03-0719-07

References

[1] Cook W D, Kress M. Characterizing an equitable allocation of shared costs: A DEA approach[J]. European Journal of Operational Research, 1999, 119(3): 652-661.
[2] Lozano S, Villa G. Centralized resource allocation using data envelopment analysis[J]. Journal of Productivity Analysis, 2004, 22(1-2): 143-161.
[3] Lozano S, Villa G, Andenso-Diaz B. Centralized target setting for regional recycling operations using DEA[J]. Omega, 2004, 32(2): 101-110.
[4] Asmild M, Paradi J C, Pastor J T. Centralized resource allocation BCC models[J]. Omega, 2009, 37(1): 40-49.
[5] Fang L. Centralized resource allocation based on efficiency analysis for step-by-step improvement path[J]. Omega, 2015, 51(3): 24-28.
[6] Nasrabadi N, Dehnokhalaji A, Kiani N A, et al. Resource allocation for performance improvement[J]. Annals of Operations Research, 2012, 196(1): 459-468.
[7] Fang L. A generalized DEA model for centralized resource allocation[J]. European Journal of Operational Research, 2013, 228(2): 405-412.
[8] Amirteimoori A, Emrouznejad A. Optimal input/output reduction in production processes[J]. Decision Support Systems, 2012, 52(3): 742-747.
[9] Lozano S. Information sharing in DEA: A cooperative game theory approach[J]. European Journal of Operational Research, 2012, 222(3): 558-565.
[10] Chen R R, Yin S Y. The equivalence of uniform and Shapley value-based cost allocations in a specific game[J]. Operations Research Letters, 2010, 38(6): 5391-5544.
[11] Kruś L, Bronis P. Cooperative game solution concepts to a cost allocation problem[J]. European Journal of Operational Research, 2000, 122(2): 258-271.
[12] Erli G, Takahasi K, Chen L, et al. Transmission expansion cost allocation based on cooperative game theory for congestion relief[J]. International Journal of Electrical Power & Energy Systems, 2005, 27(1): 61-67.
[13] Ye F, Xu X J. Cost allocation model for optimizing supply chain inventory with controllable lead time[J]. Computer & Industrial Engineering, 2010, 59(1): 93-99.
[14] 李勇军, 梁. 基于DEA与联盟博弈的固定成本分摊方法[J]. 系统工程理论与实践, 2008, 28(11): 80-84.Li Y J, Liang L. Method of allocating the fixed cost based on data envelopment analysis and cooperative game[J]. Systems Engineering—— Theory & Practice, 2008, 28(11): 80-84.
[15] 张启平, 刘业政, 李勇军. 考虑受益性的固定成本分摊DEA 纳什讨价还价模型[J]. 系统工程理论与实践, 2014, 34(3): 756-768.Zhang Q P, Liu Y Z, Li Y J. The DEA bargaining model for allocating the fixed cost considering benefit[J]. Systems Engineering—— Theory & Practice, 2014, 34(3): 756-768.
[16] 李勇军, 梁#
[37] , 凌六一. 基于 DEA 联盟博弈核仁解的固定成本分摊方法研究[J]. 中国管理科学, 2009, 17(1): 58-63.Li Y J, Liang L, Ling L Y. The methodological study of allocation the fixed cost based on the nucleolus in data envelopment analysis and cooperative game[J]. Chinese Journal of Management Science, 2009, 17(1): 58-63.
[17] 李勇军, 戴前智, 毕功兵. 基于 DEA 和核心解的固定成本分摊方法研究[J]. 系统工程学报, 2010, 25(5): 675-680.Li Y J, Dai Q Z, Bi G B, et al. Allocating the fixed cost based on the core and data envelopment analysis[J]. Journal of Systems Engineering, 2010, 25(5): 675-680.
[18] Lotfi F H, Nematollahi N, Behzadi M H, et al. Centralized resource allocation with stochastic data[J]. Journal of Computational and Applied Mathematics, 2012, 236(7): 1783-1788.
[19] MalekMohammadi N, Jaafar A B. Centralized resource allocation in DEA with interval data: An application to commercial banks in Malaysia[J]. International Journal of Mathematical Analysis, 2009, 3(16): 757-764.
[20] 李维乾, 解建仓, 李建勋, 等. 基于改进 Shapley 值解的流域生态补偿额分摊方法[J]. 系统工程理论与实践, 2013, 33(1): 255-261.Li W Q, Xie J C, Li J X, et al. Method of allocating ecological compensation amount of river basin based on improved Shapley value[J]. Systems Engineering—— Theory & Practice, 2013, 33(1): 255-261.
[21] Beasley J E. Allocating fixed costs and resources via data envelopment analysis[J]. European Journal of Operational Research, 2003, 147(1): 198-216.
[22] Li Y J, Yang F, Liang L, et al. Allocating the fixed cost as a complement of other cost inputs: A DEA approach[J]. European Journal of Operational Research, 2009, 197(1): 389-401.
[23] Lin R Y. Allocating fixed costs and common revenue resources via data envelopment analysis[J]. Applied Mathematics and Computation, 2011, 218(7): 3680-3688.
[24] Li Y J, Yang M, Chen Y, et al. Allocating a fixed cost based on data envelopment analysis and satisfaction degree[J]. Omega, 2013, 41(1): 55-60.
[25] Yang Z H, Zhang Q W. Resource allocation based on DEA and modified Shapley value[J]. Applied Mathematics and Computation, 2015, 263: 280-286.
[26] 王美强, 李勇军. 基于修正Russell方法的模糊决策单元的排序[J]. 中国管理科学, 2014, 22(3): 115-120.Wang M Q, Li Y J. Full rank of fuzzy decision making units based on enhanced Russell measure[J]. Chinese Journal of Management Science, 2014, 22(3): 115-120.
[27] Shapley L S. A value for n-persons games[J]. Annals of Mathematics Studies, 1953, 28: 307-318.

Funding

The Research Funds of Renmin University of China (Fundamental Research Funds for the Central Universities) (16XNB036)
PDF(525 KB)

387

Accesses

0

Citation

Detail

Sections
Recommended

/