The effectiveness of balance function invariable weights decision making

LI Deqing, ZENG Wenyi

Systems Engineering - Theory & Practice ›› 2016, Vol. 36 ›› Issue (3) : 712-718.

PDF(473 KB)
PDF(473 KB)
Systems Engineering - Theory & Practice ›› 2016, Vol. 36 ›› Issue (3) : 712-718. DOI: 10.12011/1000-6788(2016)03-0712-07

The effectiveness of balance function invariable weights decision making

  • LI Deqing1,2, ZENG Wenyi2
Author information +
History +

Abstract

The effectiveness of two classes of balance function, summing and multiplying decomposable balance function, in variable weights decision making is discussed. Two concepts of penalty capability and stimulation capability of decomposable balance function are defined, which reflect the balance ability of the penalty balance function and stimulation balance function respectively. The balance effectiveness of the balance function is analyzed in three aspects. The first one is the influence of the balance function on the orness measure of variable weight vector. The second aspect is the influence on the factor weights transferring. In the third aspect, the influence of the balance on the synthesis value is discussed. The results manifest that the law of the operation of the decomposable balance function can be grasped easily by considering the capability of the penalty and stimulation. It also shows that the general principle of selection an appropriate balance function in decision making is presented theoretically by applying the capability of the balance function.

Key words

variable weights synthesis / decomposable balance function / penalty capability / stimulation capability / original function

Cite this article

Download Citations
LI Deqing , ZENG Wenyi. The effectiveness of balance function invariable weights decision making. Systems Engineering - Theory & Practice, 2016, 36(3): 712-718 https://doi.org/10.12011/1000-6788(2016)03-0712-07

References

[1] 李洪兴. 因素空间理论与知识表示的数学框架(VIII)[J]. 模糊系统与数学, 1995, 9(3): 1-9. Li H X. Factor spaces and mathematical frame of knowledge representation (VIII)[J]. Fuzzy Systems and Mathematics, 1995, 9(3): 1-9.
[2] 汪培庄. 模糊集与随机集落影[M]. 北京: 北京师范大学出版社, 1985. Wang P Z. Shadow of fuzzy sets and random sets[M]. Beijing: Beijing Normal University Press, 1985.
[3] 李洪兴. 因素空间理论与知识表示的数学框架(IX)[J]. 模糊系统与数学, 1996, 10(2): 12-19. Li H X. Factor spaces and mathematical frame of knowledge representation (IX)[J]. Fuzzy Systems and Mathematics, 1996, 10(2): 12-19.
[4] 朱勇珍, 李洪兴. 状态变权的公理化体系和均衡函数的构造[J]. 系统工程理论与实践, 1999, 19(7): 116-118. Zhu Y Z, Li H X. Axiomatic system of state variable weights and construction of balance functions[J]. Systems Engineering—— Theory & Practice, 1999, 19(7): 116-118.
[5] 李德清, 李洪兴. 基于层次变权的多因素决策[J]. 系统工程学报, 2004, 19(3): 258-263. Li D Q, Li H X. Multifactor decision making based on hierarchical variable weights[J]. Journal of Systems Engineering, 2004, 19(3): 258-263.
[6] 刘文奇. 变权综合中的惩罚-激励效用[J]. 系统工程理论与实践, 1998, 18(4): 41-47. Liu W Q. The penalty-incentive utility in variable weight synthesizing[J]. Systems Engineering—— Theory & Practice, 1998, 18(4): 41-47.
[7] 李德清, 郝飞龙. 状态变权向量的变权效果[J]. 系统工程理论与实践, 2009, 29(6): 127-131. Li D Q, Hao F L. Weights transferring effect of state variable weights vector[J]. Systems Engineering—— Theory & Practice, 2009, 29(6): 127-131.
[8] 李德清, 李洪兴. 变权决策中变权效果分析与状态变权向量的确定[J]. 控制与决策, 2004, 19(11): 1241-1245. Li D Q, Li H X. Analysis of variable weights effect and selection of appropriate state variable weights vectors in decision making[J]. Control and Decision, 2004, 19(11): 1241-1245.
[9] 王庆东, 侯海军. 基于区间数的变权与状态变权[J]. 系统工程学报, 2008, 23(4): 493-497. Wang Q D, Hou H J. Interval number based variable weight and state variable weight[J]. Journal of Systems Engineering, 2008, 23(4): 493-497.
[10] 李德清, 王加银. 基于语言量词的变权综合决策方法[J]. 系统工程理论与实践, 2010, 30(11): 1998-2002. Li D Q, Wang J Y. Variable weight average based on linguistic quantifier[J]. Systems Engineering—— Theory & Practice, 2010, 30(11): 1998-2002.
[11] 李德清, 赵彩霞, 谷云东. 等效均衡函数的性质及均衡函数的构造[J]. 模糊系统与数学, 2005, 19(1): 87-92. Li D Q, Zhao C X, Gu Y D. Properties of equivalent balance function and construction approaches of balance function[J]. Fuzzy Systems and Mathematics, 2005, 19(1): 87-92.
[12] 李德清, 郝飞龙. 因素状态值为语言标度的变权综合决策方法[J]. 系统工程理论与实践, 2014, 34(1): 176-181. Li D Q, Hao F L. Variable weights multifactor decision making based on linguistic factor state values[J]. Systems Engineering—— Theory & Practice, 2014, 34(1): 176-181.
[13] 曹可劲, 江汉, 赵宗贵. 一种基于变权理论的空中目标威胁估计方法[J]. 解放军理工大学学报(自然科学版), 2006, 7(1): 32-35. Cao K J, Jiang H, Zhao Z G. Air threat assessment based on variable weight theory[J]. Journal of PLA University of Science and Technology (Natural Science), 2006, 7(1): 32-35.
[14] Yager R R. On ordered weighted averaging aggregation operators in multiciteria decision making[J]. IEEE Transactions on Systems, Man, and Cybernetics, 1988(18): 183-190.

Funding

National Natural Science Foundation of China (10971243)
PDF(473 KB)

370

Accesses

0

Citation

Detail

Sections
Recommended

/