Intuitionistic normal fuzzy prioritized aggregation operators and their application to group decision making

LIU Zhengmin, LIU Peide

Systems Engineering - Theory & Practice ›› 2016, Vol. 36 ›› Issue (2) : 494-504.

PDF(526 KB)
PDF(526 KB)
Systems Engineering - Theory & Practice ›› 2016, Vol. 36 ›› Issue (2) : 494-504. DOI: 10.12011/1000-6788(2016)02-0494-11

Intuitionistic normal fuzzy prioritized aggregation operators and their application to group decision making

  • LIU Zhengmin, LIU Peide
Author information +
History +

Abstract

An intuitionistic normal fuzzy number is the generalization of an intuitionistic fuzzy number and an normal fuzzy number. For the intuitionistic normal fuzzy information aggregating problems, some operational laws as well as the expected value and comparison criteria of the intuitionistic normal fuzzy numbers are defined and proved. Based on these operational laws, we develop some aggregation operators which has prioritization relationships between the criterias, including the intuitionistic normal fuzzy prioritized weighted arithmetic averaging operator (INFPWA), the intuitionistic normal fuzzy prioritized weighted geometric operator (INFPWG) and the intuitionistic normal fuzzy prioritized ordered weighted averaging operator (INFPOWA), and the properties of these operators are presented. For multiple-criteria group decision problems, in which the experts and criterias are in different priority level and the criteria values are intuitionistic normal fuzzy numbers, an approach based on intuitionistic normal fuzzy prioritized aggregation operators is proposed. Finally, an illustrative example shows the feasibility and availability of the proposed approach.

Key words

intuitionistic normal fuzzy number / prioritized aggregation operator / multi-criteria group decision making

Cite this article

Download Citations
LIU Zhengmin , LIU Peide. Intuitionistic normal fuzzy prioritized aggregation operators and their application to group decision making. Systems Engineering - Theory & Practice, 2016, 36(2): 494-504 https://doi.org/10.12011/1000-6788(2016)02-0494-11

References

[1] Zadeh L A. Fuzzy sets[J]. Information and Control, 1965, 8(3):338-353.
[2] Atanassov K T. Intuitionistic fuzzy sets[J]. Fuzzy Sets and Systems, 1986, 20(1):87-96.
[3] Atanassov K, Gargov G. Interval valued intuitionistic fuzzy sets[J]. Fuzzy Sets and Systems, 1989, 31(3):343-349.
[4] Xu Z S. Intuitionistic fuzzy aggregation operators[J]. IEEE Transactions on Fuzzy Systems, 2007, 15(6):1179-1187.
[5] 刘锋,袁学海. 模糊数直觉模糊集[J]. 模糊系统与数学, 2007, 21(1):88-91. Liu F, Yuan X H. Fuzzy number intuitionistic fuzzy set[J]. Fuzzy Systems and Mathematics, 2007, 21(1):88-91.
[6] 卫贵武. I-FIFOWA算子及其在群决策中的应用[J]. 管理学报, 2010, 7(6):903-908. Wei G W. Induced fuzzy number intuitionistic fuzzy ordered weighted averaging (I-FIFOWA) operator and its application to group decision making[J]. Chinese Journal of Management, 2010, 7(6):903-908.
[7] 王坚强. 模糊多准则决策方法研究综述[J]. 控制与决策, 2008, 23(6):601-607. Wang J Q. Overview on fuzzy multi-criteria decision-making approach[J]. Control and Decision, 2008, 23(6):601-607.
[8] 王坚强,聂荣荣. 基于直觉梯形模糊信息的多准则群决策方法[J]. 系统工程理论与实践, 2012, 32(8):1747-1753. Wang J Q, Nie R R. Multi-criteria group decision-making method based on intuitionistic trapezoidal fuzzy information[J]. Systems Engineering-Theory & Practice, 2012, 32(8):1747-1753.
[9] 谭春桥,张强. 模糊多属性决策的直觉模糊集方法[J]. 模糊系统与数学, 2006, 20(5):71-76. Tan C Q, Zhang Q. Intuitionistic fuzzy sets method for fuzzy multiple attribute decision making[J]. Fuzzy Systems and Mathematics, 2006, 20(5):71-76.
[10] 刘培德,张新. 直觉不确定语言集成算子及在群决策中的应用[J]. 系统工程理论与实践, 2013, 32(12):2704-2711. Liu P D, Zhang X. Intuitionistic uncertain linguistic aggregation operators and their application to group decision making[J]. Systems Engineering-Theory & Practics, 2013, 32(12):2704-2711.
[11] Zhang X, Liu P D. Method for aggregating triangular fuzzy intuitionistic fuzzy information and its application to decision making[J]. Technological and Economic Development of Economy, 2010(2):280-290.
[12] 万树平. 直觉模糊多属性决策方法综述[J]. 控制与决策, 2010, 25(11):1601-1606. Wan S P. Survey on intuitionistic fuzzy multi-attribute decision making approach[J]. Control and Decision, 2010, 25(11):1601-1606.
[13] 李德毅,刘常昱. 论正态云模型的普适性[J]. 中国工程科学, 2004, 6(8):28-34. Li D Y, Liu C Y. Study on the universality of the normal cloud model[J]. Engineering Science, 2004, 6(8):28-34.
[14] 吕泽华,陈传波,秦培煜. 正态模糊集合——Fuzzy集理论的新拓展[J]. 计算机科学, 2006, 33(11):1-4. Lü Z H, Chen C B, Qin P Y. Normal distribution fuzzy sets-A new extension of fuzzy sets[J]. Computer Science, 2006, 33(11):1-4.
[15] 王坚强,李康健. 基于直觉正态模糊集结算子的多准则决策方法[J]. 系统工程理论与实践, 2013, 33(6):1501-1508. Wang J Q, Li K J. Multi-criteria decision-making method based on intuitionistic normal fuzzy aggregation operators[J]. Systems Engineering-Theory & Practics, 2013, 33(6):1501-1508.
[16] Xu Z, Yager R R. Some geometric aggregation operators based on intuitionistic fuzzy sets[J]. International Journal of General Systems, 2006, 35(4):417-433.
[17] 徐泽水. 区间直觉模糊信息的集成方法及其在决策中的应用[J]. 控制与决策, 2007, 22(2):215-219. Xu Z S. Methods for aggregating interval-valued intuitionistic fuzzy information and their application to decision making[J]. Control and Decision, 2007, 22(2):215-219.
[18] Yang M S, Ko C H. On a class of fuzzy c-numbers clustering procedures for fuzzy data[J]. Fuzzy Sets and Systems, 1996, 84(1):49-60.
[19] 许若宁,李楚霖. 一类不分明时间序列的回归预测[J]. 高校应用数学学报:A辑, 2001, 16(4):455-461. Xu R N, Li C L. Regression prediction for fuzzy time series[J]. Applied Mathematics A Journal of Chinese Universities (Series A), 2001, 16(4):451-461.
[20] Wang J Q, Zhou P, Li K J, et al. Multi-criteria decision-making method based on normal intuitionistic fuzzy-induced generalized aggregation operator[J]. TOP, 2014:1-20.
[21] Yager R R. Prioritized aggregation operators[J]. International Journal of Approximate Reasoning, 2008, 48(1):263-274.
[22] 刘培德,金芳. 区间直觉不确定语言集成算子及在群决策中的应用研究[J]. 管理工程学报, 2014, 28(1):124-130. Liu P D, Jin F. Interval-valued intuitionistic uncertain linguistic aggregation operators and their application to group decision making[J]. Journal of Industrial Engineering/Engineering Management, 2014, 28(1):124-130.
[23] Yu X, Xu Z. Prioritized intuitionistic fuzzy aggregation operators[J]. Information Fusion, 2013, 14(1):108-116.
[24] Yu D, Wu Y, Lu T. Interval-valued intuitionistic fuzzy prioritized operators and their application in group decision making[J]. Knowledge-Based Systems, 2012, 30:57-66.
[25] Zhao X, Lin R, Wei G. Fuzzy prioritized operators and their application to multiple attribute group decision making[J]. Applied Mathematical Modelling, 2013, 37(7):4759-4770.

Funding

The General Program of National Natural Science Foundation of China (71271124, 71471172); Humanity and Social Science Youth Foundation of Ministry of Education (13YJC630104); Shandong Provincial Natural Science Foundation, China (ZR2013GQ011)
PDF(526 KB)

370

Accesses

0

Citation

Detail

Sections
Recommended

/