ANN model for prediction of concentration change of radionuclide based on physical mechanism

HU Tiesong, ZHOU Yanchen, WANG Xianjia

Systems Engineering - Theory & Practice ›› 2016, Vol. 36 ›› Issue (1) : 263-272.

PDF(1633 KB)
PDF(1633 KB)
Systems Engineering - Theory & Practice ›› 2016, Vol. 36 ›› Issue (1) : 263-272. DOI: 10.12011/1000-6788(2016)01-0263-10

ANN model for prediction of concentration change of radionuclide based on physical mechanism

  • HU Tiesong1, ZHOU Yanchen1,2, WANG Xianjia3
Author information +
History +

Abstract

It needs long time to predict radioactive contaminant diffusion in receiving water by using mechanism model based on computational fluid dynamics, which is not applicable in emergency situation under accident condition. In order to shorten the computation time, a new artificial neural network model that combines species transport equation which governs contaminant diffusion and neural network model is proposed, and an improved particle swarm optimization algorithm is used to obtain the weight and threshold values of neural network. In this paper, long half-life radionuclide diffusion in Fushui reservoir after a postulated accident happened in Xianning nuclear power station in Hubei Province is studied as a case. The result shows that this proposed model can basically predict the contaminant diffusion trend, and the prediction result fit well with CFD simulation output. Compared with the conventional black box neural network model and the ones with priori knowledge obtained from data monotone, the priori knowledge obtained from equation of physical mechanism is a stronger constrain, which can make the prediction result more close to the simulation output.

Key words

computational fluid dynamics / neural network / priori knowledge / physical mechanism / nuclear accident

Cite this article

Download Citations
HU Tiesong , ZHOU Yanchen , WANG Xianjia. ANN model for prediction of concentration change of radionuclide based on physical mechanism. Systems Engineering - Theory & Practice, 2016, 36(1): 263-272 https://doi.org/10.12011/1000-6788(2016)01-0263-10

References

[1] Monte L, Periañez R, Boyer P, et al. The role of physical processes controlling the behaviour of radionuclide contaminants in the aquatic environment: A review of state-of-the-art modelling approaches[J]. Journal of Environmental Radioactivity, 2009, 100(9): 779-784.
[2] Koziy L, Maderich V, Margvelashvili N, et al. Three-dimensional model of radionuclide dispersion in estuaries and shelf seas[J]. Environmental Modelling & Software, 1998, 13(5-6): 413-420.
[3] Heling R. Lakeco: Modelling the transfer of radionuclides in a lake ecosystem[J]. Radiation Protection Dosimetry, 1997, 73(1-4): 191-194.
[4] Zheleznyak M, Shepeleva T, Sizonenko V, et al. Simulation of countermeasures to diminish radionuclide fluxes from the chernobyl zone via aquatic pathways[J]. Radiation Protection Dosimetry, 1997, 73(1-4): 181-186.
[5] Zheleznyak M. The mathematic modelling of radionuclide transport by surface water flow from the vicnity of the chornobyl nuclear power plant[J]. Condensed Matter Physics, 1997, 12: 37-50.
[6] 乾爱国, 段杰辉, 纪平. 内陆核电站低放射性废水排放的三维计算[J]. 水利学报, 2007, 38(12): 1495-1499.Qian A G, Duan J H, Ji P. Three dimensional modeling of radionuclide effluent flow in reservoir for nuclear power station[J]. Journal of Hydraulic Engineering, 2007, 38(12): 1495-1499.
[7] 武国正, 徐宗学. 核电站低放射性废水在封闭水体中的输移规律研究[J]. 环境科学, 2012, 33(7): 2438-2443.Wu G Z, Xu Z X. Transport process of low-level radioactive liquid effluent of nuclear power station in closed water body[J]. Environmental Science, 2012, 33(7): 2438-2443.
[8] 周彦辰, 胡铁松, 张楠楠. 内陆核电站事故情况下核素迁移扩散模拟[J]. 华中科技大学学报(自然科学版), 2012, 23(2): 11-15. Zhou Y C, Hu T S, Zhang N N. Simulation of radionuclide diffusion of an inland nuclear power plant under accident condition[J]. Journal of Huazhong University of Science and Techlonogy (Natural Science Edition), 2014, 23(2): 11-15.
[9] 胡铁松, 袁鹏, 丁晶. 人工神经网络在水文水资源中的应用[J]. 水科学进展, 1995, 6(1): 76-82. Hu T S, Yuan P, Ding J. Application of artificial neural network to hydrology and water resources[J]. Advances in Water Science, 1995, 6(1): 76-82.
[10] 刘国东, 黄川友. 水质综合评价的人工神经网络模型[J]. 中国环境科学, 1998, 18(6): 514-517.Liu G D, Huang C Y. The models of artificial neural networks for comprehensive assessment of water quality[J]. China Environmental Science, 1998, 18(6): 514-517.
[11] 李松, 刘力军, 翟曼. 改进粒子群算法优化 BP 神经网络的短时交通流预测[J]. 系统工程理论与实践, 2012, 32(9): 2045-2049. Li S, Liu L J, Zhai M. Prediction for short-term traffic flow based on modified PSO optimized BP neural network[J]. Systems Engineering-Theory & Practice, 2012, 32(9): 2045-2049.
[12] Joerding W H, Meador J L. Encoding a priori information in feed forward network[J]. Neural Networks, 1991, 4(6): 847-856.
[13] Thompson M L, Kramer M A. Modeling chemical processes using prior knowledge and neural networks[J]. AICHE Journal, 1994, 40(8): 1328-1340.
[14] 娄海川, 苏宏业, 谢磊. 融合过程先验知识的递归神经网络模型及其应用[J]. 化工学报, 2013, 64(5): 1665-1673. Lou H C, Su H Y, Xie L. Recurrent neural network integrated with process-priori-knowledge and its application[J]. CIESC, 2013, 64(5): 1665-1673.
[15] 史步海, 朱学峰, 陈锦威. 基于先验知识的混凝沉淀过程神经网络建模[J]. 华南理工大学学报(自然科学版), 2008(5): 113-118.Shi B H, Zhu X F, Chen J W. Neural-network modeling of coagulation sedimentation process based on prior knowledge[J]. Journal of South China University of Technology (Natural Science Edition), 2008, 36(5): 113-118.
[16] 王福军. 计算流体动力学分析: CFD 软件原理与应用[M]. 北京: 清华大学出版社, 2004.Wang F J. Computational fluid dynamics analysis: Theory and practice of CFD software[M]. Beijing: Tsinghua University Press, 2004.
[17] Nuclear Regulatory Commission. Estimating aquatic dispersion of effluents from accidental and routine reactor releases for the purpose of implementing, Regulatory Guide. 113[R]. Annapolis: Nuclear Regulatory Commission, 1977.
[18] Jiang Y, Hu T, Huang C C, et al. An improved particle swarm optimization algorithm[J]. Applied Mathematics and Computation, 2007, 193(1): 231-239.
[19] Zhang G P. Time series forecasting using a hybrid ARIMA and neural network model[J]. Neurocomputing, 2003, 50(1): 159-175.
[20] Hu T S, Lam K C, Ng S T. A modified neural network for improving river flow prediction[J]. Hydrological Sciences Journal, 2005, 50(2): 299-318.

Funding

The General Program of National Natural Foundation of China (71171151)
PDF(1633 KB)

294

Accesses

0

Citation

Detail

Sections
Recommended

/