The stochastic decomposition structure of the waiting time for M/G/1/∞ queue with N-policy and Min(N,V)-policy

TANG Yinghui, LAN Shaojun

Systems Engineering - Theory & Practice ›› 2016, Vol. 36 ›› Issue (1) : 174-183.

PDF(532 KB)
PDF(532 KB)
Systems Engineering - Theory & Practice ›› 2016, Vol. 36 ›› Issue (1) : 174-183. DOI: 10.12011/1000-6788(2016)01-0174-10

The stochastic decomposition structure of the waiting time for M/G/1/∞ queue with N-policy and Min(N,V)-policy

  • TANG Yinghui1,2, LAN Shaojun1
Author information +
History +

Abstract

In some studies concerning M/G/1/∞ queueing models with N-policy, since the waiting time for a customer arriving during a server off-duty period is no longer independent of the inter-arrival times of customers arriving later, it is difficult to investigate the distribution of equilibrium waiting time, and considerable effort is devoted to study the steady-state queue length and additional queue length of queueing system, while there is relatively little work done on the stationary waiting time and its stochastic decomposition. Due to the fact, in this paper we firstly treat the classical N-policy M/G/1/∞ queueing system. We study the waiting time distribution in equilibrium, and present the stochastic decomposition result of steady-state waiting time as well as the explicit expression for the distribution of additional delay time. Meanwhile, some errors on corresponding results in existed references are pointed out. Further, we consider the M/G/1/∞ queueing systems with multiple server vacations and single server vacation under Min(N,V)-policy. By similar analytical method, we not only obtain the stochastic decomposition result of equilibrium waiting time but also derive the formulas for the mean stationary waiting time and mean additional delay time. Especially, some corresponding results for some special queueing systems can be directly obtained on the basis of the results provided in this paper.

Key words

N-policy and Min(N,V)-policy / M/G/1/∞ queue / steady-state waiting time / additional delay time / stochastic decomposition

Cite this article

Download Citations
TANG Yinghui , LAN Shaojun. The stochastic decomposition structure of the waiting time for M/G/1/∞ queue with N-policy and Min(N,V)-policy. Systems Engineering - Theory & Practice, 2016, 36(1): 174-183 https://doi.org/10.12011/1000-6788(2016)01-0174-10

References

[1] Yadin M, Naor P. Queueing systems with a removable service station[J]. Operations Research Quarterly, 1963, 14(4): 393-405.
[2] Balachandran K R. Control policies for a single server system[J]. Management Science, 1973, 19(9): 1013-1018.
[3] Balachandran K R, Tijms H. On the D-policy for M/G/1 queue[J]. Management Science, 1975, 21(9): 1073-1076.
[4] Levy Y, Yechiali U. Utilization of idle time in an M/G/1 queueing system[J]. Management Science, 1975, 22(2): 202-211.
[5] Heyman D P. T-policy for the M/G/1 queue[J]. Management Science, 1977, 23(7): 775-778.
[6] 田乃硕. 休假随机服务系统 [M]. 北京: 北京大学出版社, 2001.Tian N S. Stochastic service systems with vacations[M]. Beijing: Peking University Press, 2001.
[7] 井彩霞, 崔颖, 田乃硕. Min(N,V)- 策略休假的 M/G/1 排队系统分析 [J]. 运筹与管理, 2006, 15(3): 53-58.Jing C X, Cui Y, Tian N S. Analisis of the M/G/1 queueing system with Min(N,V)-policy[J]. Operations Research & Management Science, 2006, 15(3): 53-58.
[8] Alfa A S, Li W. Optimal(N,T)- policy for M/G/1 system with cost structures[J]. Performance Evaluation, 2000, 42(4): 265-277.
[9] Ke J C. Modified T vacation policy for an M/G/1 queueing system with an unreliable server and startup[J]. Mathematical and Computer Modelling, 2005, 41(11-12): 1267-1277.
[10] 唐应辉, 刘燕. N- 策略 M/G/1/∞ 排队系统的队长分布表达式 [J].运筹与管理, 2006, 15(3): 40-46.Tang Y H, Liu Y. The expression of the queue length distribution for M/G/1/∞ queue with N-policy[J]. Operations Research & Management Science, 2006, 15(3): 40-46.
[11] 唐应辉. 延迟 N-策略 M/G/1 排队系统队长的瞬态和稳态分布 [J]. 系统工程理论与实践, 2007, 27(11): 130-134.Tang Y H. The transient and equilibrium distributions of the queue-length for M/G/1 queue with delayed N-policy[J]. Systems Engineering-Theory & Practice, 2007, 27(11): 130-134.
[12] 唐应辉, 刘名武. N- 策略单重休假 M/G/1 排队系统的队长分布 [J]. 应用数学, 2008, 21(1): 20-26.Tang Y H, Liu M W. The queue-length distribution for M/G/1 queue with N-policy and single vacation[J]. Mathematica Applicata, 2008, 21(1): 20-26.
[13] Tang Y H , Yun X, Huang S H. Discrete-time GeoX/G/1 queue with unreliable server and multiple adaptive delayed vacation[J]. Journal of Computational and Applied Mathematics, 2008, 220(1-2): 439-455.
[14] 刘名武, 马永开. 延迟启动-关闭型 N- 策略 M/G/1 排队系统的队长分布 [J]. 系统工程学报, 2010, 25(1): 104-110.Liu M W, Ma Y K. Queue-length distribution for M/G/1 queueing system under N-policy with hysteretic startup and closedown[J]. Journal of Systems Engineering, 2010, 25(1): 104-110.
[15] 唐应辉, 蒲会, 余玅妙. 带启动时间的 N- 策略 M/G/1 排队系统的队长 [J]. 系统工程理论与实践, 2011, 31(1): 131-137.Tang Y H, Pu H, Yu M M. Queue size of M/G/1 queueing system with N-policy and set-up times[J]. Systems Engineering-Theory & Practice, 2011, 31(1): 131-137.
[16] Yu M M, Tang Y H, Fu Y H. Steady state analysis and computation of the GIx/Mb/1/L queue with multiple working vacations and partial batch rejection[J]. Computers & Industrial Engineering, 2009, 56(4): 1243-1253.
[17] 田乃硕, 徐秀丽, 马占友. 离散时间排队论 [M]. 北京: 科学出版社, 2008.Tian N S, Xu X L, Ma Z Y. Dicrete-time queueing theory[M]. Beijing: Science Press, 2008.
[18] 余玅妙, 唐应辉. 离散时间有限缓冲空间 GI/Geom/1/N 工作休假排队系统稳态概率算法及性能分析 [J]. 系统工程理论与实践, 2009, 29(9): 99-107.Yu M M, Tang Y H. Steady-state probability algorithm and performance analysis of the finite buffer discrete-time GI/Geom/1/N queueing system with working vacations[J]. Systems Engineering-Theory & Practice, 2009, 29(9): 99-107.
[19] 罗海军, 朱翼隽. 带有负顾客的 N- 策略工作休假 M/M/1 排队 [J]. 运筹与管理, 2010, 19(1): 100-105.Luo H J, Zhu Y J. The M/M/1 working vacation queue with negative customers and N-policy[J]. Operations Research and Management Science, 2010, 19(1): 100-105.
[20] 刘名武, 唐应辉, 滕云龙. N- 策略离散时间 Geom/G/1 排队系统的队长分布 [C]//第五届中国不确定系统年会论文集, 2007: 69-73.Liu M W, Tang Y H, Teng Y L. Queue-length distribution for the discrete-time Geom/G/1 queueing system under N-policy[C]//Proceedings of the Fifth China Annual Conference on Uncertainty, 2007: 69-73.
[21] 吴锦标, 尹小玲, 刘再明. 具有 N- 策略和负顾客的反馈抢占型的 M/G/1 重试可修排队系统 [J]. 应用数学学报, 2009, 32(2): 323-334.Wu J B, Yin X L, Liu Z M. The M/G/1 retrial queues with N-policy, feedback, preemptive resume and unreliable server[J]. Acta Mathematicae Aplicatae Sinica, 2009, 32(2): 323-334.
[22] 刘名武, 马永开. Bernoulli 反馈排队的 N- 策略 Geom/G/1 排队系统的队长分布 [J]. 系统工程, 2008, 26(12): 103-109.Liu M W, Ma Y K. The distributions of queue-length for Geom/G/1 under N-policy with bernoulli feedback queue[J]. Systems Engineering, 2008, 26(12): 103-109.
[23] Yu M M, Tang Y H, Fu Y H, et al. GI/Geom/1/MWV queue with changeover time and searching for the optimum service rate in working vacation period[J]. Journal of Computational and Applied Mathematics, 2011, 235(8): 2170-2184.
[24] 余玅妙, 唐应辉, 付永红. 具有中途准入机制和多重休假的离散时间 GI/Geom(a,b)/1/N 早到达排队系统 [J]. 应用数学学报, 2011, 34(5): 853-872.Yu M M, Tang Y H, Fu Y H. GI/Geom(a,b)/1/N early arrival queueing system with accessible mechanism of ongoing service and multiple vacations[J]. Acta Mathematicae Applicatae Sinica, 2011, 34(5): 853-872.
[25] 魏瑛源, 唐应辉, 顾建雄. 延迟 N- 策略 Geo/G/1 排队系统的队长分布及数值计算 [J]. 系统工程理论与实践, 2011, 31(11): 2151-2160.Wei Y Y, Tang Y H, Gu J X. Queue length distribution and numerical calculation for Geo/G/1 queueing system with delayed N-policy[J]. Systems Engineering-Theory & Practice, 2011, 31(11): 2151-2160.
[26] Luo C Y, Tang Y H, Li W, et al. The recursive solution of queue length for Geo/G/1 queue with N-policy[J]. Journal of Systems Science and Complexity, 2012, 25(2): 293-302.
[27] Wei Y Y, Yu M M, Tang Y H, et al. Queue size distribution and capacity optimum design for N-policy Ge(λ1,λ2,λ3)/G/1 queue with setup time and variable input rate[J]. Mathematical and Computer Modelling, 2013, 57(5-6): 1559-1571.
[28] Luo C Y, Tang Y H, Chao B S, et al. Performance analysis of a discrete-time Geo/G/1 queue with randomized vacations and at most J vacations[J]. Applied Mathematical Modelling, 2013, 37(9): 6489-6504.
[29] 唐应辉, 吴文青, 刘云颇, 等. 基于多重休假的 Min(N,V)- 策略 M/G/1 排队的队长分布 [J]. 系统工程理论与实践, 2014, 34(6): 1533-1546.Tang Y H, Wu W Q, Liu Y P, et al. The queue length distribution of M/G/1 queueing system with Min(N,V)-policy based on multiple server vacations[J]. Systems Engineering-Theory & Practice, 2014, 34(6): 1533-1546.
[30] 唐应辉, 吴文青, 刘云颇. 基于单重休假的 Min(N,V)- 策略 M/G/1 排队系统分析 [J]. 应用数学学报, 2014, 37(6): 976-996.Tang Y H, Wu W Q, Liu Y P. Analysis of M/G/1 queueing system with Min(N,V)-policy based on single server vacation[J]. Acta Mathematicae Applicatae Sinica, 2014, 37(6): 976-996.
[31] 魏瑛源, 唐应辉, 余玅妙. 基于 Min(N,D)- 策略 M/G/1 排队系统的队长分布及最优策略 [J]. 系统科学与数学, 2015, 35(6): 729-744.Wei Y Y, Tang Y H, Yu M M. Queue length distribution and optimum policy for M/G/1 queueing system under Min(N,D)-policy[J]. Journal of Systems Science & Mathematical Sciences, 2015, 35(6): 729-744.

Funding

National Natural Science Foundation of China (71171138, 71571127)
PDF(532 KB)

300

Accesses

0

Citation

Detail

Sections
Recommended

/