Method of bottleneck identification for massive crowd circulating network

MA Jian, XU Sumei, FAN Wenbo, SONG Weiguo

Systems Engineering - Theory & Practice ›› 2016, Vol. 36 ›› Issue (1) : 164-173.

PDF(1423 KB)
PDF(1423 KB)
Systems Engineering - Theory & Practice ›› 2016, Vol. 36 ›› Issue (1) : 164-173. DOI: 10.12011/1000-6788(2016)01-0164-10

Method of bottleneck identification for massive crowd circulating network

  • MA Jian1, XU Sumei1, FAN Wenbo1, SONG Weiguo2
Author information +
History +

Abstract

Under scenario of sports events and other kinds of massive gathering, a large amount of people would travel along road networks, thus forming crowded pedestrians. The high density situation might induce in mass panic and stampede, causing serious injuries and casualties. Therefore, it is necessary to firstly understand pedestrian flow features on the corresponding network and then apply proper control method to organize and manage pedestrian flow. Firstly, considering general characteristics of travelers' route choice behavior, all these pedestrians are dynamically assigned onto the road network via a traffic assignment model. Secondly, a nonlinear pedestrian road impedance function is introduced to address the congestion effects of massive crowds, and the pedestrian travel time changing rate is calculated for each link under various traffic volumes. It is proposed to sort the networks links according to the travel time changing rate. The rank is thus defined as a measurement of the structural importance of each link. Further, the structural importance is used to determine link robustness under different pedestrian traffic demand. Combing the result of structural importance and link robustness, bottleneck of the crowd circulating network can be identified. Finally, the Love Parade 2010 in Duisburg (an electronic music festival) is adopted as a case to illustrate the applicability of the proposed network bottleneck identification method. The threshold of pedestrian volume on the network and the effect of road control strategy are further investigated, the obtained basic data and theoretical results can benefit scientific planning and management of massive crowd road traffic.

Key words

massive crowds / transportation network / bottleneck identification / pedestrian road impedance function / importance of network components

Cite this article

Download Citations
MA Jian , XU Sumei , FAN Wenbo , SONG Weiguo. Method of bottleneck identification for massive crowd circulating network. Systems Engineering - Theory & Practice, 2016, 36(1): 164-173 https://doi.org/10.12011/1000-6788(2016)01-0164-10

References

[1] 刘小明, 陈燕燕, 荣建. 大型活动交通组织规划理论与方法[M]. 北京: 科学出版社, 2010: 1-5. Liu X M, Chen Y Y, Rong J. Traffic organization planning theory and method of large-scale activities[M]. Beijing: Science Press, 2010: 1-5.
[2] Ngai K M, Burkle F M, Hsu A, et al. Human stampedes: A systematic review of historical and peer-reviewed sources[J]. Disaster Medicine and Public Health Preparedness, 2009, 3(4): 191-195.
[3] Helbing D, Farkas I, Vicsek T. Simulating dynamical features of escape panic[J]. Nature, 2000, 407(6803): 487-490.
[4] Helbing D, Johansson A, Al-Abideen H Z. Dynamics of crowd disasters: An empirical study[J]. Physical Review E, 2007, 75(4): 046109.
[5] Ma J, Song W G, Lo S M, et al. New insights into turbulent pedestrian movement pattern in crowd-quakes[J]. Journal of Statistical Mechanics: Theory and Experiment, 2013, 2013(02): P02028.
[6] Ma J, Song W G, Lo S M. Simulation of crowd-quakes with heterogeneous contact model[M]. Traffic and Granular Flow'13. Springer International Publishing, 2015: 103-110.
[7] Pretorius M, Gwynne S, Galea E R. Large crowd modelling: An analysis of the duisburg love parade disaster[J]. Fire and Materials, 2015, 39(4): 301-322.
[8] Ma J, Song W G, Liao G X. Multi-grid simulation of pedestrian counter flow with topological interaction[J]. Chinese Physics B, 2010, 19(12): 128901.
[9] 张培红, 黄晓燕, 万欢欢,等. 基于智能体技术的人员群集流动动力学模型[J]. 沈阳建筑大学学报(自然科学版), 2006, 21(4): 358-362.Zhang P H, Huang X Y, Wan H H, et al. An agent-based model for crowd flow dynamics[J]. Journal of Shenyang Jianzhu University (Natural Science), 2006, 21(4): 358-362.
[10] Guo R Y. New insights into discretization effects in cellular automata models for pedestrian evacuation[J]. Physica A: Statistical Mechanics and its Applications, 2014, 400: 1-11.
[11] Ma J, Lo S M, Song W G, et al. Modeling pedestrian space in complex building for efficient pedestrian traffic simulation[J]. Automation in Construction, 2013, 30: 25-36.
[12] Zhang J, Klingsch W, Schadschneider A, et al. Transitions in pedestrian fundamental diagrams of straight corridors and T-junctions[J]. Journal of Statistical Mechanics: Theory and Experiment, 2011, 2011(06): P06004.
[13] Zhang J, Klingsch W, Schadschneider A, et al. Ordering in bidirectional pedestrian flows and its influence on the fundamental diagram[J]. Journal of Statistical Mechanics: Theory and Experiment, 2012, 2012(02): P02002.
[14] Weidmann U. Transporttechnik der Fussgänger[J]. Strasse und Verkehr, 1992, 78(3): 161-169.
[15] Fruin J J. Designing for pedestrians: A level-of-service concept[J]. Highway Research Board, 1971, 355(377): 1-15.
[16] 张青松, 刘茂, 赵国敏. 体育赛场人群疏散过程滞留人数定量模型研究[J]. 安全与环境学报, 2006, 6(3): 21-23.Zhang Q S, Liu M, Zhao G M. Study on stranded crowd number quantitative model of stadium crowd evacuation[J]. Journal of Safety and Environment, 2006, 6(3): 21-23.
[17] Jiang Y, Wong S, Ho H, et al. A dynamic traffic assignment model for a continuum transportation system[J]. Transportation Research Part B: Methodological, 2011, 45(2): 343-363.
[18] 王振, 刘茂. 人群疏散的动力学特征及疏散通道堵塞的恢复[J]. 自然科学进展, 2008, 18(2): 179-185.Wang Z, Liu M. Dynamics characteristics of crowd evacuation and the recovery of the blocked evacuation passageway[J]. Progress in Natural Science, 2008, 18(2): 179-185.
[19] Hughes R L. The flow of human crowds[J]. Annual Review of Fluid Mechanics, 2003, 35(1): 169-182.
[20] Chalmet L G, Francis R L, Saunders P B. Network models for building evacuation[J]. Management Science, 1982, 28(1): 86-105.
[21] Ma J, Chen J, Liao Y, et al. Efficiency analysis of elevator aided building evacuation using network model[J]. Procedia Engineering, 2013, 52: 259-266.
[22] Helbing D, Mukerji P. Crowd disasters as systemic failures: Analysis of the love parade disaster[J]. EPJ Data Science, 2012, 1(1): 1-40.
[23] 秦进, 史峰. 一种新的交通网络效率衡量方法及其应用[J]. 系统工程, 2008, 26(4): 94-98.Qin J, Shi F. A new measure for transportation congested network[J]. Systems Engineering, 2008, 26(4): 94-98.
[24] Nagurney A, Qiang Q. A network efficiency measure with application to critical infrastructure networks[J]. Journal of Global Optimization, 2008, 40(1-3): 261-275.
[25] 余孝军, 黄海军. 交通网络效率的度量和元件重要性的计算方法[J]. 系统工程理论与实践, 2012, 32(7): 1546-1552.Yu X J, Huang H J. Measuring the network efficiency and computing the component importance[J]. Systems Engineering-Theory & Practice, 2012, 32(7): 1546-1552.
[26] Oppenheim N. Urban travel demand modeling: From individual choices to general equilibrium[M]. New York: John Wiley and Sons, 1995.
[27] 余孝军,黄海军, 刘天亮. 固定需求网络中多用户类随机均衡的效率损失[J]. 交通运输系统工程与信息, 2009, 9(4): 83-89.Yu X J, Huang H J, Liu T L. Efficiency loss of the multi-class stochastic traffic equilibrium assignment with fixed demand[J]. Journal of Transportation Systems Engineering and Information Technology, 2009, 9(4): 83-89.
[28] Guo R Y, Huang H J. Logit-based exit choice model of evacuation in rooms with internal obstacles and multiple exits[J]. Chinese Physics B, 2010, 19(3): 030501.
[29] Sheffi Y. Urban transportation networks: Equilibrium analysis with mathematical programming methods[M]. New Jersey: Prentice Hall, 1985.
[30] 王志刚, 石嵘, 高伟君. 上海轨道交通车站乘客走行时间函数的分析[J]. 城市轨道交通研究, 2010, 13(12): 57-60.Wang Z G, Shi R, Gao W J. Analysis of passengers' walking time function at Shanghai urban rail station[J]. Urban Mass Transit, 2010, 13(12): 57-60.
[31] 中国新闻网. 上海外滩踩踏致36死47伤[EB/OL]. [2015-01-02]. http://news.ifeng.com/a/20150102/42847736_0.shtml.China news Web site. The stampede in Shanghai Bund caused 36 deaths 47 injuries[EB/OL]. [2015-01-02]. http://news.ifeng.com/a/20150102/42847736_0.shtml.

Funding

National Natural Science Foundation of China (71103148, 51178445, 71473207); Fundamental Research Funds for the Central Universities (2682014CX103)
PDF(1423 KB)

Accesses

Citation

Detail

Sections
Recommended

/