The model of anti-TBM target allocation optimization based on fuzzy random programming

FAN Cheng-li, XING Qing-hua, ZHENG Ming-fa, WANG Yi-fei

Systems Engineering - Theory & Practice ›› 2015, Vol. 35 ›› Issue (9) : 2401-2409.

PDF(1032 KB)
PDF(1032 KB)
Systems Engineering - Theory & Practice ›› 2015, Vol. 35 ›› Issue (9) : 2401-2409. DOI: 10.12011/1000-6788(2015)9-2401

The model of anti-TBM target allocation optimization based on fuzzy random programming

  • FAN Cheng-li1, XING Qing-hua1, ZHENG Ming-fa2, WANG Yi-fei1
Author information +
History +

Abstract

For much uncertainty characteristic, the theory of fuzzy random programming is introduced into anti-tactical ballistic missile (TBM) target allocation optimization problem. Firstly, The model of anti-TBM target allocation optimization based on fuzzy random programming is constructed. Furthermore, the improved discrete particle swarm optimization (IDPSO) algorithm is proposed on the basis of the effective particle decoding scheme. Then, the hybrid intelligent algorithm is designed to solve the model, which integrates the technique of fuzzy random simulation and IDPSO algorithm. Finally, experimental results demonstrate the feasibility of hybrid intelligent algorithm for solving the proposed model.

Key words

target allocation / fuzzy random programming / fuzzy random simulation / discrete particle swarm optimization

Cite this article

Download Citations
FAN Cheng-li , XING Qing-hua , ZHENG Ming-fa , WANG Yi-fei. The model of anti-TBM target allocation optimization based on fuzzy random programming. Systems Engineering - Theory & Practice, 2015, 35(9): 2401-2409 https://doi.org/10.12011/1000-6788(2015)9-2401

References

[1] Kwakernaak H. Fuzzy random variables——I. Definitions and theorems[J]. Information Sciences, 1978, 15(1): 1-29.
[2] Puri M L, Ralescu D. Fuzzy random variables[J]. Journal of Mathematical Analysis and Applications, 1986, 114(2): 409-422.
[3] Liu Y K, Liu B. A class of fuzzy random optimization: Expected value models[J]. Information Sciences, 2003, 155(1): 89-102.
[4] 马军杰, 柯华, 马卫民. 基于相关机会规划思想的模糊随机时间费用均衡模型[J]. 系统工程理论与实践, 2013, 33(4): 886-892. Ma Junjie, Ke Hua, Ma Weimin. Fuzzy random time-cost trade-off model based on the philosophy of dependent-chance programming[J]. Systems Engineering——Theory & Practice, 2013, 33(4): 886-892.
[5] Katagiri H, Uno T, Kato K, et al. Random fuzzy multi-objective linear programming: Optimization of possibility value at risk (pVaR)[J]. Expert Systems with Applications, 2013, 40(1): 563-574.
[6] Lu J L, Wang X M, Zhang L C. Fuzzy random multi-objective optimization based routing for wireless sensor networks[J]. Soft Computing, 2014, 18(5): 981-994.
[7] Wang S, Liu Y K, Watada J. Fuzzy random renewal process with queueing applications[J]. Computers and Mathematics with Applications, 2009, 57(7): 1232-1248.
[8] 任剑, 高阳. 不完全信息的离散型模糊随机多准则决策方法[J]. 系统工程理论与实践, 2011, 31(1): 122-130. Ren Jian, Gao Yang. Discrete fuzzy-stochastic multi-criterion decision-making method with incomplete information[J]. Systems Engineering——Theory & Practice, 2011, 31(1): 122-130.
[9] Bogdanowicz Z R. Advanced input generating algorithm for effect-based weapon-target pairing optimization[J]. IEEE Transactions on Systems, Man and Cybernetics——Part A: Systems and Humans, 2012, 42(1): 276-280.
[10] Toroslu I H, Arslanoglu Y. Genetic algorithm for the personnel assignment problem with multiple objectives[J]. Information Sciences, 2007, 177(3): 787-803.
[11] Song Y S, Lu H Q, He L. Weapon-target as-signment problem based on improved ACA[J]. Mathematics in Practice and Theory, 2009, 39(20): 92-99.
[12] McKendall A R, Shang J, Kuppusamy S. Simulated annealing heuristics for the dynamic facility layout problem[J]. Computers & Operations Research, 2006, 33(8): 2431-2444.
[13] 叶文, 朱爱红, 欧阳中辉. 基于混合离散粒子群算法的多无人作战飞机协同目标分配[J]. 兵工学报, 2010, 31(3): 331-336. Ye Wen, Zhu Aihong, Ouyang Zhonghui. Multi-UCAV cooperation mission assignment based on hybrid discrete particle swarm optimization algorithm[J]. Acta Armamentarii, 2010, 31(3): 331-336.
[14] 李龙跃, 刘付显, 梅颖颖. 末段反TBM 火力-目标匹配优化及APSO求解算法[J]. 系统工程与电子技术, 2013, 35(5): 993-999.Li Longyue, Liu Fuxian, Mei Yingying. Attractor particle swarm optimization for anti-TBM firepower-target match modeling in terminal phase[J]. Systems Engineering and Electronics, 2013, 35(5): 993-999.
[15] Shi Y H, Eberhart R. A modified particle swarm optimizer[C]//Proceedings of Evolutionary Computation, Piscataway, USA, 1998: 69-73.
[16] Chatterjee A, Siarry P. Nonlinear inertia weight variation for dynamic adaptation in particle swarm optimization[J]. Computers and Operations Research, 2006, 33(3): 859-871.
PDF(1032 KB)

373

Accesses

0

Citation

Detail

Sections
Recommended

/