Dealing with interval DEA based on error propagation and entropy

FAN Jian-ping, YUE Wei-zhen, WU Mei-qin

Systems Engineering - Theory & Practice ›› 2015, Vol. 35 ›› Issue (5) : 1293-1303.

PDF(619 KB)
PDF(619 KB)
Systems Engineering - Theory & Practice ›› 2015, Vol. 35 ›› Issue (5) : 1293-1303. DOI: 10.12011/1000-6788(2015)5-1293

Dealing with interval DEA based on error propagation and entropy

  • FAN Jian-ping, YUE Wei-zhen, WU Mei-qin
Author information +
History +

Abstract

The conventional data envelopment analysis (DEA) measures the relative efficiencies of a set of decision making units (DMUs) with exact data of inputs and outputs. In the real world, however, it is possible to obtain interval data rather than exact data because of various limitations, e.g., statistical errors and incomplete information. To overcome those limitations, researchers have proposed kinds of approaches dealing with interval data envelopment analysis (DEA), which either use traditional data envelopment analysis (DEA) models by transforming interval data into exact data or get an efficiency interval by using the bound of interval data. In contrast to the traditional approaches above dealing with interval data envelopment analysis (DEA), the paper focuses on interval data envelopment analysis (DEA), combining conventional data envelopment analysis (DEA) models with error propagation and entropy, using the idea of modified cross efficiency, then gets the overall cross efficiency of decision making units (DMUs) in the form of error distribution and ranks decision making units (DMUs) using the calculated overall cross efficiency by the directional distance index. At last two numerical examples are employed to illustrate the feasibility and effectiveness of the proposed method.

Key words

data envelopment analysis (DEA) / cross efficiency / error propagation / entropy / directional distance index

Cite this article

Download Citations
FAN Jian-ping , YUE Wei-zhen , WU Mei-qin. Dealing with interval DEA based on error propagation and entropy. Systems Engineering - Theory & Practice, 2015, 35(5): 1293-1303 https://doi.org/10.12011/1000-6788(2015)5-1293

References

[1] Charnes A, Cooper W W, Rhodes E. Measuring the efficiency of decision making units[J]. European Journal of Operational Research, 1978, 2(6): 429-444.
[2] Sexton T R, Silkman R H, Hogan A. Data envelopment analysis: Critique and extensions[C]// Silkman R H. Measuring Efficiency: An Assessment of Data Envelopment Analysis. San Francisco: Jossey-Bass, 1986: 73-105.
[3] Doyle J, Green R. Efficiency and cross efficiency in DEA: Derivations, meanings and uses[J]. Journal of the Operational Research Society, 1994, 45(5): 567-578.
[4] Liang L, Wu J, Cook W D, et al. Alternative secondary goals in DEA cross efficiency evaluation[J]. International Journal of Production Economics, 2008, 113(2): 1025-1030.
[5] Wang Y M, Chin K S. A neutral DEA model for cross-efficiency evaluation and its extension[J]. Expert Systems with Applications, 2010, 37(5): 3666-3675.
[6] Wang Y M, Chin K S, Luo Y. Cross-efficiency evaluation based on ideal and anti-ideal decision making units[J]. Expert Systems with Applications, 2011, 38(8): 10312-10319.
[7] Jahanshahloo G R, Khodabakhshi M, Hosseinzadeh L F, et al. A cross-efficiency model based on super-efficiency for ranking units through the TOPSIS approach and its extension to the interval case[J]. Mathematical and Computer Modelling, 2011, 53(9-10): 1946-1955.
[8] Wu J, Liang L, Yang F. Determination of the weights for the ultimate cross efficiency using Shapley value in cooperative game[J]. Expert Systems with Applications, 2009, 36(1): 872-876.
[9] Wu J, Sun J, Liang L, et al. Determination of weights for ultimate cross efficiency using Shannon entropy[J]. Expert Systems with Applications, 2011, 38(5): 5162-5165.
[10] Wang Y M, Chin K S. The use of OWA operator weights for cross-efficiency aggregation[J]. Omega, 2011, 39(5): 493-503.
[11] Yang G L, Yang J B, Liu W B, et al. Cross-efficiency aggregation in DEA models using the evidential-reasoning approach[J]. European Journal of Operational Research, 2013, 231(2): 393-404.
[12] 武玉英, 何喜军. 基于DEA方法的北京可持续发展能力评价[J]. 系统工程理论与实践, 2006, 26(3): 117-123.Wu Yuying, He Xijun. The evaluation of Beijing sustainable development based on DEA model[J]. Systems Engineering - Theory & Practice, 2006, 26(3): 117-123.
[13] 黄#
[38] , 葛虹, 冯英浚. 基于链形系统的关联网络DEA模型:以我国14家商业银行为例[J]. 系统工程理论与实践, 2009, 29(5): 106-114.Huang Yi, Ge Hong, Feng Yingjun. Relational network DEA model based on series system: Application of 14 commercial banks in China[J]. Systems Engineering - Theory & Practice, 2009, 29(5): 106-114.
[14] 王海燕, 于荣, 郑继媛, 等. DEA-Gini准则在城市公共交通企业绩效评价中的应用[J]. 系统工程理论与实践, 2012, 32(5): 1083-1090.Wang Haiyan, Yu Rong, Zheng Jiyuan, et al. Evaluating the efficiency of urban public transit enterprises: An application of DEA-Gini approach[J]. Systems Engineering - Theory & Practice, 2012, 32(5): 1083-1090.
[15] Shannon C E. The mathematical theory of communication[J]. The Bell System Technical Journal, 1948, 27(3): 397-423.
[16] Zhou Y, Xing X P, Fang K G, et al. Environmental efficiency analysis of power industry in China based on an entropy SBM model[J]. Energy Policy, 2013, 57: 68-75.
[17] Liang J Y, Chin K S, Dang C Y, et al. A new method for measuring uncertainty and fuzziness in rough set theory[J]. International Journal of General Systems, 2012, 31(4): 331-342.
[18] Song P, Liang J Y, Qian Y H. A two-grade approach to ranking interval data[J]. Knowledge-Based Systems, 2012, 27: 234-244.
[19] Cooper W W, Park K S, Yu G. IDEA and AR-IDEA: Models for dealing with imprecise data in DEA[J]. Management Science, 1999, 45(4): 597-607.
[20] Lee Y K, Park K S, Kim S H. Identification of inefficiencies in an additive model based IDEA (imprecise data envelopment analysis)[J]. Computation Operation Research, 2002, 29(12): 1661-1676.
[21] Zhu J. Imprecise data envelopment analysis (IDEA): A review and improvement with an application[J]. European Journal of Operational Ressearch, 2003, 144(3): 513-529.
[22] Despotis D K, Smirlis Y G. Data envelopment analysis with imprecise data[J]. European Journal of Operational Ressearch, 2002, 140(1): 24-36.
[23] Haghighat M S, Khorram E. The maximum and minimum number of efficient units in DEA with interval data[J]. Applied Mathematics and Computation, 2005, 163(2): 919-930.
[24] Jahanshahloo G R, Hosseinzadeh L F, Moradi M. Sensitivity and stability analysis in DEA with interval data[J]. Applied Mathematics and Computation, 2004, 156(2): 463-477.
[25] Jahanshahloo G R, Matin R K, Vencheh A H. On return to scale of fully efficient DMUs in data envelopment analysis under interval data[J]. Applied Mathematics and Computation, 2004, 154(1): 31-40.
[26] Jahanshahloo G R, Matin R K, Vencheh A H. On FDH efficiency analysis with interval data[J]. Applied Mathematics and Computation, 2004, 159(1): 47-55.
[27] Entani T, Maeda Y, Tanaka H. Dual models of interval DEA and its extension to interval data[J]. European Journal of Operational Research, 2002, 136(1): 32-45.
[28] Wang Y M, Greatbanks R, Yang J B. Interval efficiency assessment using data envelopment analysis[J]. Fuzzy Sets and Systems, 2005, 153(3): 347-370.
[29] Kao C. Interval efficiency measures in data envelopment analysis with imprecise data[J]. European Journal of Operational Research, 2006, 174(2): 1087-1099.
[30] Park K S. Efficiency bounds and efficiency classifications in DEA with imprecise data[J]. Journal of the Operational Research Society, 2007, 58(4): 533-540.
[31] Park K S. Duality, efficiency computations and interpretations in imprecise DEA[J]. European Journal of Operational Research, 2010, 200(1): 289-296.
[32] 许皓, 孙燕红, 华中生. 基于整体效率的区间DEA方法研究[J]. 中国管理科学, 2010, 18(2): 102-107.Xu Hao, Sun Yanhong, Hua Zhongsheng. An interval DEA method based on overall efficiency[J]. Chinese Journal of Management Science, 2010, 18(2): 102-107.
[33] Yoon K. The propagation of errors in multiple-attribute decision analysis: A practical approach[J]. Journal of the Operational Research Society, 1989, 40: 681-686.
[34] 樊治平, 郭亚军. 误差分析理论在区间数多属性决策问题中的应用[J]. 东北大学学报(自然科学版), 1997, 18(5): 555-560.Fan Zhiping, Guo Yajun. An application of error analysis theory to the multiple attribute decision making with interval numbers[J]. Journal of Northeastern University (Natural Science), 1997, 18(5): 555-560.
[35] 尤天慧, 樊治平. 不确定性多属性决策中确定熵权的一种误差分析方法[J]. 系统工程, 2003, 21(1): 101-104. You Tianhui, Fan Zhiping. An error propagation method for assessing entropy weights in uncertain multiple attribute decision making[J]. Systems Engineering, 2003, 21(1): 101-104.
[36] 梁#
[37] , 吴杰. 区间DEA的一种改进的充分排序方法[J]. 系统工程, 2006, 24(1): 107-110.Liang Liang, Wu Jie. An improving completely ranking approach for Interval DEA[J]. Systems Engineering, 2006, 24(1): 107-110.
PDF(619 KB)

390

Accesses

0

Citation

Detail

Sections
Recommended

/