Study on decision-making method for complex crisis

WANG Gang-qiao, LIU Yi, YANG Pan, YANG Rui, ZHANG Hui

Systems Engineering - Theory & Practice ›› 2015, Vol. 35 ›› Issue (10) : 2449-2458.

PDF(865 KB)
PDF(865 KB)
Systems Engineering - Theory & Practice ›› 2015, Vol. 35 ›› Issue (10) : 2449-2458. DOI: 10.12011/1000-6788(2015)10-2449

Study on decision-making method for complex crisis

  • WANG Gang-qiao, LIU Yi, YANG Pan, YANG Rui, ZHANG Hui
Author information +
History +

Abstract

Based on comparison between classical decision-making issues and crisis decision-making issues, specified constrain conditions of crisis decision-making are analyzed, which behaves more like a complex system. In this paper, a decision-making method for complex crisis is developed, which consists of three principles, a cross-simulation model, and a decision-making model based on cross-simulation. The three principles include the dynamic anchoring principle, the effective non-optimal principle, and the bottom line principle. The three principles aim at three major difficulties of crisis decision-making, which are no-fixed objective, lack of evaluation method, and hard to adjust. The cross-simulation model contributes to accuracy and reliability of simulation with integration of data and models. The decision-making model based on cross-simulation provides effective decision support for complex crisis. The method developed in this paper may be applied to more complex issues not limited to crisis.

Key words

crisis decision-making support / cross-simulation / complex system

Cite this article

Download Citations
WANG Gang-qiao , LIU Yi , YANG Pan , YANG Rui , ZHANG Hui. Study on decision-making method for complex crisis. Systems Engineering - Theory & Practice, 2015, 35(10): 2449-2458 https://doi.org/10.12011/1000-6788(2015)10-2449

References

[1] 张辉, 刘奕. 基于"情景-应对"的国家应急平台体系基础科学问题与集成平台[J]. 系统工程理论与实践, 2012, 32(5): 947-953.Zhang Hui, Liu Yi. Key problems on fundamental science and technology integration in "scenario-response" based national emergency response platform system[J]. Systems Engineering - Theory & Practice, 2012, 32(5): 947-953.
[2] 史培军. 灾害系统复杂性与综合防灾减灾[J].中国减灾, 2014(11): 20-21.Shi Peijun. Disaster system complexity and comprehensive disaster prevention and mitigation[J]. Disaster Reduction in China, 2014(11): 20-21.
[3] 王飞跃. 关于复杂系统研究的计算理论与方法[J].中国基础科学, 2004, 6(5): 3-10. Wang Feiyue. Research on calculated theory and method of complex system[J]. China Basic Science, 2004, 6(5): 3-10.
[4] Kiker G A, Bridges T S, Varghese A, et al. Application of multicriteria decision analysis in environmental decision making[J]. Integrated Environmental Assessment and Management, 2005, 1(2): 95-108.
[5] Xu Z X, Xi S R, Qu J Y. Multi-attribute analysis of nuclear reactor accident emergency decision making[J]. Journal of Tsinghua University, 2008, 48(3): 445-448.
[6] Mesmer B L, Bloebaum C L. Incorporation of decision, game, and Bayesian game theory in an emergency evacuation exit decision model[J]. Fire Safety Journal, 2014, 67: 121-134.
[7] 裘江南, 王延章, 董磊磊, 等. 基于贝叶斯网络的突发事件预测模型[J]. 系统管理学报, 2011, 20(1): 98-103. Qiu Jiangnan, Wang Yanzhang, Dong Leilei, et al. A model for predicting emergency event based on Bayesian networks[J]. Journal of Systems & Management, 2011, 20(1): 98-103.
[8] 李藐, 陈建国, 陈涛, 等. 突发事件的事件链概率模型[J]. 清华大学学报(自然科学版), 2010(8): 1173-1177.Li Miao, Chen Jianguo, Chen Tao, et al. Probability for disaster chains in emergencies[J]. Journal of Tsinghua University (Science and Technology), 2010(8): 1173-1177.
[9] Alavi M, Leidner D E. Review: Knowledge management and knowledge management systems: Conceptual foundations and research issues[J]. MIS Quarterly, 2001: 107-136.
[10] Sun R. Robust reasoning: Integrating rule-based and similarity-based reasoning[J]. Artificial Intelligence, 1995, 75(2): 241-295.
[11] Giarratano J C, Riley G. Expert systems[M]. PWS Publishing Co, 1998.
[12] Studer R, Benjamins V R, Fensel D. Knowledge engineering: Principles and methods[J]. Data & Knowledge Engineering, 1998, 25(1): 161-197.
[13] Aamodt A, Plaza E. Case-based reasoning: Foundational issues, methodological variations, and system approaches[J]. AI Communications, 1994, 7(1): 39-59.
[14] López De Mantaras R, McSherry D, Bridge D, et al. Retrieval, reuse, revision and retention in case-based reasoning[J]. The Knowledge Engineering Review, 2005, 20(3): 215-240.
[15] Kolodner J. Case-based reasoning[M]. Morgan Kaufmann, 2014.
[16] Kurbalija V, Ivanovic M, Budimac Z. Case-based reasoning framework for generating wide-range decision support systems[C]// Artificial Intelligence and Pattern Recognition, 2008: 273-279.
[17] López B. Case-based reasoning: A concise introduction[J]. Synthesis Lectures on Artificial Intelligence and Machine Learning, 2013, 7(1): 1-103.
[18] Augsten N, Böhlen M H. Similarity joins in relational database systems[J]. Synthesis Lectures on Data Management, 2013, 5(5): 1-124.
[19] Krupka J, Kasparova M, Jirava P. Case-based reasoning model in process of emergency management[M]// Man-Machine Interactions. Springer Berlin Heidelberg, 2009: 77-84.
[20] Liu W M, Hu G Y, Li J F. Emergency resources demand prediction using case-based reasoning[J]. Safety Science, 2012, 50(3): 530-534.
[21] 王红卫, 祁超, 魏永长, 等. 基于数据的决策方法综述[J]. 自动化学报, 2009, 35(6): 820-833.Wang Hongwei, Qi Chao, Wei Yongchang, et al. Survey of decision making methods based on data[J]. Acta Automatica Sinica, 2009, 35(6): 820-833.
[22] Sawant N, Shah H. Big data introduction[M]// Big Data Application Architecture Q & A. A, 2013: 1-8.
[23] The fourth paradigm: Data-intensive scientific discovery[M]. Redmond, WA: Microsoft Research, 2009.
[24] 李国杰. 大数据研究的科学价值[J]. 中国计算机学会通讯, 2012, 8(9): 8-15.Li Guojie. Scientific value of big data research[J]. Communication of Computer Science in China, 2012, 8(9): 8-15.
[25] Ginsberg J, Mohebbi M H, Patel R S, et al. Detecting influenza epidemics using search engine query data[J]. Nature, 2009, 457(7232): 1012-1014.
[26] Agrawal R, Srikant R. Fast algorithms for mining association rules[C]// Proceedings of 20th International Conference on Very Large Data Bases, VLDB. 1994, 1215: 487-499.
[27] Provost F, Fawcett T. Data science and its relationship to big data and data-driven decision making[J]. Big Data, 2013, 1(1): 51-59.
[28] Lazer D, Kennedy R, King G, et al. The parable of Google flu: Traps in big data analysis[J]. Science, 2014, 343: 1203-1205.
[29] Kelton W D, Law A M. Simulation modeling and analysis[M]. Boston: McGraw Hill, 2000.
[30] 席裕庚, 李德伟, 林姝. 模型预测控制——现状与挑战[J]. 自动化学报, 2013, 39(3): 222-236.Xi Yugeng, Li Dewei, Lin Shu. Predictive and control of model - Present situation and challenge[J]. Acta Automatica Sinica, 2013, 39(3): 222-236.
[31] Wang F Y. Parallel system methods for management and control of complex systems[J]. Control and Decision, 2004, 19(5): 485-489.
[32] 王飞跃. 平行控制: 数据驱动的计算控制方法[J]. 自动化学报, 2013, 39(4): 293-302. Wang Feiyue. Parallel Control: A method for data-driven and computational control[J]. Acta Automatica Sinica, 2013, 39(4): 293-302.
[33] 王飞跃, 邱晓刚, 曾大军, 等. 基于平行系统的非常规突发事件计算实验平台研究[J]. 复杂系统与复杂性科学, 2011, 7(4): 1-10.Wang Feiyue, Qiu Xiaogang, Zeng Dajun, et al. A computational experimental platform for emergency response based on parallel systems[J]. Complex Systems and Complexity Science, 2011, 7(4): 1-10.
[34] Rubinstein R Y, Kroese D P. Simulation and the Monte Carlo method[M]. John Wiley & Sons, 2011.
[35] Ho Y C, Zhao Q C, Jia Q S. Ordinal optimization: Soft optimization for hard problems[M]. Springer, 2008.
[36] Lau T W E, Ho Y C. Universal alignment probabilities and subset selection for ordinal optimization[J]. Journal of Optimization Theory and Applications, 1997, 93(3): 455-489.
[37] Chen C H, Lin J, Yücesan E, et al. Simulation budget allocation for further enhancing the efficiency of ordinal optimization[J]. Discrete Event Dynamic Systems, 2000, 10(3): 251-270.
[38] Chen C H, He D, Fu M, et al. Efficient simulation budget allocation for selecting an optimal subset[J]. INFORMS Journal on Computing, 2008, 20(4): 579-595.
[39] Chen C H. Stochastic simulation optimization: An optimal computing budget allocation[M]. World Scientific, 2010.
[40] Xiao H, Lee L H. Simulation optimization using genetic algorithms with optimal computing budget allocation[J]. Simulation, 2014, 90(10): 1146-1157.
[41] Brantley M W, Lee L H, Chen C H, et al. An efficient simulation budget allocation method incorporating regression for partitioned domains[J]. Automatica, 2014, 50(5): 1391-1400.
[42] Yuan S C, Liu Y, Wang G Q, et al. A cross-simulation method for large-scale traffic evacuation with big data[C]// Proceedings of the Workshop on the 14 International Conference on Web-Age Information Management. Macau, 2014.
[43] Othman S H, Beydoun G. Model-driven disaster management[J]. Information & Management, 2013, 50(5): 218-228.
[44] Goldratt E M, Cox J, Whitford D. The goal: A process of ongoing improvement[M]. Great Barrington eMA MA: North River Press, 2004.
[45] Comes T, Hiete M, Wijngaards N, et al. Integrating scenario-based reasoning into a multi-criteria decision support system for emergency management[M]// Advanced ICTs for Disaster Management and Threat Detection. Collaborative and Distributed Frameworks, 2010: 221-236.
[46] Vitoriano B, Rodríguez J T, Tirado G, et al. Intelligent decision-making models for disaster management[J]. Human and Ecological Risk Assessment: An International Journal, 2015, 21(5): 1341-1360.
PDF(865 KB)

904

Accesses

0

Citation

Detail

Sections
Recommended

/