Off-target deviation degree method for grey multi-attribute group decision-making

DAI Wen-zhan, LI Jiu-liang

Systems Engineering - Theory & Practice ›› 2014, Vol. 34 ›› Issue (3) : 787-792.

PDF(405 KB)
PDF(405 KB)
Systems Engineering - Theory & Practice ›› 2014, Vol. 34 ›› Issue (3) : 787-792. DOI: 10.12011/1000-6788(2014)3-787

Off-target deviation degree method for grey multi-attribute group decision-making

  • DAI Wen-zhan, LI Jiu-liang
Author information +
History +

Abstract

The off-target deviation degree method is presented for grey multi-attribute group decision-making problem in which its attribute value, attribute weight and authority weight are interval grey numbers. The concepts of positive group target, negative group target and group off-target deviation degree are respectively proposed. The approach for measuring group off-target deviation degree is given to determine which program is best one from the viewpoint of positive and negative ideal solutions based on TOPSIS. The simulation results show the method is very effective.

Key words

group decision-making / interval number / group off-target deviation degree / grey target decision-making

Cite this article

Download Citations
DAI Wen-zhan , LI Jiu-liang. Off-target deviation degree method for grey multi-attribute group decision-making. Systems Engineering - Theory & Practice, 2014, 34(3): 787-792 https://doi.org/10.12011/1000-6788(2014)3-787

References

[1] 徐迎军, 李东.多属性群决策达成一致方法研究[J].控制与决策, 2010, 25(12): 1810-1814.Xu Yingjun, Li Dong. Approach to reaching consensus in multiple attribute group decision making[J]. Control and Decision, 2010, 25(12): 1810-1814.
[2] 张新波.多目标群体决策问题的灰色分析方法[J].信息与控制, 2004, 33(2): 223-226.Zhang Xinbo. Grey analytical method of multi-objective group decision-making problem[J]. Information and Control, 2004, 33(2): 223-226.
[3] 陈孝新.灰色多属性群决策的TOPSIS法[J].江西财经大学学报, 2008(1): 22-25.Chen Xiaoxin. TOPSIS method of grey multiple attribute group decision[J]. Journal of Jiangxi University of Finance and Economics, 2008(1): 22-25.
[4] 陈孝新, 刘思峰.一种部分权重信息的灰色多属性群决策方法[J].系统工程与电子技术, 2009, 31(4): 843-846.Chen Xiaoxin, Liu Sifeng. Grey multiple attribute group decision-making method with partial weight information[J]. Systems Engineering and Electronics, 2009, 31(4): 843-846.
[5] 戚筱雯, 梁昌勇, 张恩桥, 等. 基于熵最大化的区间直觉模糊多属性群决策方法[J]. 系统工程理论与实践, 2011, 31(10): 1940-1948.Qi Xiaowen, Liang Changyong, Zhang Enqiao, et al. Approach to interval-valued intuitionistic fuzzy multiple attributes group decision making based on maximum entropy[J]. Systems Engineering —Theory & Practice, 2011, 31(10): 1940-1948.
[6] 李晓亚, 崔晋川. 一种可用于生产效率评价的灰靶评估算法[J]. 运筹与管理, 2005, 14(6): 843-846.Li Xiaoya, Cui Jinchuan. A grey target evaluation arithmetic used for productivity evaluation[J]. Operations Research and Management Science, 2005, 14(6): 843-846.
[7] 党耀国, 刘思峰, 刘斌.基于区间数的多指标灰靶决策模型的研究[J].中国工程科学, 2005, 7(8): 31-35.Dang Yaoguo, Liu Sifeng, Liu Bin. Study on the multi-attribute decision model of grey target based on interval number[J]. Engineering Science, 2005, 7(8): 31-35.
[8] 罗党, 孙利.三参数区间灰数信息下的多目标灰靶决策方法[C]// 第19届灰色系统全国会议, 北京, 2010: 152-156.Luo Dang, Sun Li. The multi-objective grey target decision method under the information of three-para meter interval grey number[C]// 19th Workshop on Grey System Theory and Its Applications, Beijing, 2010: 152-156.
[9] 宋捷, 党耀国, 王正新, 等.正负靶心灰靶决策模型[J].系统工程理论与实践, 2010, 30(10): 1822-1827.Song Jie, Dang Yaoguo, Wang Zhengxin, et al. New decision model of grey target with both the positive clout and the negative clout[J]. Systems Engineering —Theory & Practice, 2010, 30(10): 1822-1827.
[10] 沈春光, 党耀国, 裴玲玲.混合型多指标灰靶决策模型研究[J].统计与决策, 2010(12): 17-20.Shen Chunguang, Dang Yaoguo, Pei Lingling. Study on the mixed multi-attribute decision model of grey target[J]. Statistics and Decision, 2010(12): 17-20.
[11] 王正新, 党耀国, 杨虎. 改进的多目标灰靶决策方法[J].系统工程与电子技术, 2009, 31(11): 2634-2636.Wang Zhengxin, Dang Yaoguo, Yang Hu. Improvements on decision method of grey target[J]. Systems Engineering and Electronics, 2009, 31(11): 2634-2636.
PDF(405 KB)

367

Accesses

0

Citation

Detail

Sections
Recommended

/