The modified partition function method and its application

ZHOU Wei-jie, DANG Yao-guo, GU Rong-bao, LIN Chen-yu

Systems Engineering - Theory & Practice ›› 2014, Vol. 34 ›› Issue (3) : 668-675.

PDF(787 KB)
PDF(787 KB)
Systems Engineering - Theory & Practice ›› 2014, Vol. 34 ›› Issue (3) : 668-675. DOI: 10.12011/1000-6788(2014)3-668

The modified partition function method and its application

  • ZHOU Wei-jie1, DANG Yao-guo1, GU Rong-bao2, LIN Chen-yu1
Author information +
History +

Abstract

On account of traditional partition function hardly applying to the condition that the time series length T is a prime number or cannot be divisible by scaling s, we put forward a modified partition function whose algorithm procedure is similar to MFDFA. Using the numerical simulation of binomial multifractality, the result shows that the new method dealing with the multifractality of time series whose length is prime number is feasible and effective. The economic meaning of parameters in partition function are also discussed. By applying modified partition function, we investigate the multifractality of Shanghai A-share index. Through shuffling, removing extreme values and iterating amplitude adjusted fourier transform technological, we find that the temporal correlation, fat-tail distribution and extreme events are all contributed to the multifractality, but the autocorrelation in sequence plays an important role in the source of multifractality.

Key words

modified partition function method / numerical simulation / multifractality

Cite this article

Download Citations
ZHOU Wei-jie , DANG Yao-guo , GU Rong-bao , LIN Chen-yu. The modified partition function method and its application. Systems Engineering - Theory & Practice, 2014, 34(3): 668-675 https://doi.org/10.12011/1000-6788(2014)3-668

References

[1] Mandelbrot B B. Fractals and scaling in finance[M]. New York: Springer, 1997: 23-29.
[2] 魏宇.多分形波动率测度的VAR计算模型[J].系统工程理论与实践, 2009, 29(9): 7-15.Wei Yu. VAR model based on multifractal volatility measurement[J]. Systems Engineering —Theory & Practice, 2009, 29(9): 7-15.
[3] Muzy J F, Bacry E, Arnéodo A. Wavelets and multifractal formalism for singular signals: Application to turbulence data[J]. Physical Review Letters, 1991, 67(25): 3515-3518.
[4] Ghashghaie S, Breymann W, Peinke J, et al. Turbulent cascades in foreign exchange markets[J]. Nature, 1996, 381: 767-770.
[5] Peng C K, Buldyrev S V, Havlin S, et al. Mosaic organization of DNA nucleotides[J]. Physical Review E, 1994, 49(2): 1685-1689.
[6] Kantelhardt J W, Zschiegner S A, Koscienlny-Bunde E, et al. Multifractal detrended fluctuation analysis of nonstationary time series[J]. Physica A, 2002, 316(1-4): 87-114.
[7] Feder J. Fractals[M]. New York: Plenum Press, 1988.
[8] Sun X, Chen H P, Wu Z Q, et al. Multifractal analysis of Hang Seng index in Hong Kong stock market[J]. Physica A, 2001, 29(1-4): 553-562.
[9] Sun X, Chen H P, Yuan Y Z, et al. Predictability of multifractal analysis of Hang Seng stock index in Hong Kong[J]. Physica A, 2001, 301(1-4): 473-482.
[10] Turiel A, Pérez-Vicente C J. Multifractal geometry in stock market time series[J]. Physica A, 2003, 322(4): 629-649.
[11] Zhou Y, Leung Y. Multifractal temporally weighted detrended fluctuation analysis and its application in the analysis of scaling behavior in temperature series[J]. Journal of Statistical Mechanics, 2010(6): P06021.
[12] Gu G F, Zhou W X. Detrending moving average algorithm for multifractals[J]. Physical Review E, 2010, 82(1): 011126.
[13] Jiang Z Q, Zhou W X. Multifractality in stock indexes: Fact or fiction?[J]. Physica A, 2008, 38(14): 3605-3614.
[14] Jiang Z Q, Zhou W X. Multifractal analysis of Chinese stock volatilities based on the partition function approach[J]. Physica A, 2008, 387(19-20): 4881-4888.
[15] 魏宇.沪深300股指期货的波动率预测模型研究[J].管理科学学报, 2010, 13(2): 66-76. Wei Yu. Volatility forecasting models for CSI300 index futures[J]. Jouranl of Management Sciences in China, 2010, 13(2): 66-76.
[16] Wei Y, Huang D S. Multifractal analysis of SSEC in Chinese stock market: A different empirical result from Heng Seng[J]. Physica A, 2005, 355(1-4): 497-508.
[17] Gu G F, Chen W, Zhou W X. Quantifying bid-ask spreads in the Chinese stock market using limit-order book data: Intraday pattern, probability distribution, long memory, and multifractal nature[J]. The European Physical Journal B, 2007, 57(1): 81-87.
[18] Du G X, Ning X X. Multifractal properties of Chinese stock market in Shanghai[J]. Physica A, 2008, 387(1): 261-269.
[19] Yuan Y, Zhuang X T. Multifractal description of stock price index fluctuation using a quadratic function fitting[J]. Physica A, 2008, 387(2-3): 511-518.
[20] Wei Y, Wang P. Forecasting volatility of SSEC in Chinese stock market using multifractal analysis[J]. Physica A, 2008, 387(7): 1585-1592.
[21] Halsey T C, Jensen M H, Kadanoff L P, et al. Fractal measures and their singularities: The characterization of strange sets[J]. Physical Review A, 1986, 33(2): 1141-1151.
[22] Zhou W X, Sornette D, Yuan W K. Inverse statistics and multifractality of exit distances in 3D fully developed turbulence[J]. Physica D, 2006, 214(1): 55-62.
[23] Chen S P, He L Y. Multifractal spectrum analysis of nonlinear dynamical mechanisms in China's agricultural futures markets[J]. Physica A, 2010, 389(7): 1434-1444.
[24] Matia K, Ashkenazy Y, Stanley H E, et al. Multifractal properties of price fluctuations of stocks and commodities[J]. Europhysics Letters, 2003, 61(3): 422-428.
[25] Czarnecki L, Grech D. Multifractal dynamics of stock markets[J]. Acta Physica Polonica A, 2010, 117: 623-629.
[26] Schreiber T, Schmitz A. Improved surrogate data for nonlinearity tests[J]. Physical Review Letters, 1996, 77(4): 635-638.
[27] Mantegna R N, Stanley H E. An introduction to econophysics: Correlations and complexity in finance[M]. London: Cambridge University Press, 2000: 44-60.
[28] Zhou W X. The components of empirical multifractality in financial returns[J]. Europhysics Letter, 2009, 88(2): 28004.
PDF(787 KB)

365

Accesses

0

Citation

Detail

Sections
Recommended

/