An approach to fuzzy multiple linear regression model based on the structured element theory

WANG Hua-dong, GUO Si-cong, YUE Li-zhu

Systems Engineering - Theory & Practice ›› 2014, Vol. 34 ›› Issue (10) : 2628-2636.

PDF(491 KB)
PDF(491 KB)
Systems Engineering - Theory & Practice ›› 2014, Vol. 34 ›› Issue (10) : 2628-2636. DOI: 10.12011/1000-6788(2014)10-2628

An approach to fuzzy multiple linear regression model based on the structured element theory

  • WANG Hua-dong1, GUO Si-cong1, YUE Li-zhu2
Author information +
History +

Abstract

For multiple linear regression model which coefficients are fuzzy numbers, this paper uses least-squares approach based on fuzzy structured element theory to study analytical expression of the model. First, a new distance formula of fuzzy numbers is defined using structured element method, and also proved equivalent with one given by the paper [1] under certain conditions. But it can avoid the inconvenience of the latter caused by interval arithmetic. Fuzzy parameters are expressed by the structured element and analytical expression of fuzzy linear regression model is provided. Then we give a parameter estimation method for the model whose fuzzy parameters are LR-type fuzzy numbers. At last, an application example is presented in order to illustrate the simplification of the proposed method.

Key words

fuzzy multiple linear regression / least-squares approach / fuzzy structured element / triangular fuzzy numbers / E-distance

Cite this article

Download Citations
WANG Hua-dong , GUO Si-cong , YUE Li-zhu. An approach to fuzzy multiple linear regression model based on the structured element theory. Systems Engineering - Theory & Practice, 2014, 34(10): 2628-2636 https://doi.org/10.12011/1000-6788(2014)10-2628

References

[1] Xu R N. A linear regression model in fuzzy environment[J]. Advances in Modelling Simulation, 1991, 27: 31-40.
[2] Tanaka H, Uejima H S, Asai K. Fuzzy linear regression model[J]. IEEE Tansactions on Systems, Man, and Cybernetics, 1982, 12(6): 2933-2938.
[3] Kazemi A, Foroughi A, Hosseinzadeh M. A multi-level fuzzy linear regression model for forecasting industry energy demand of Iran[J]. Procedia—Social and Behavioral Sciences, 2012, 41: 342-348.
[4] Azadeh A, Seraj O, Asadzadeh S M, et al. An integrated fuzzy regression-data envelopment analysis algorithm for optimum oil consumption estimation with ambiguous data[J]. Applied Soft Computing, 2012, 12(8): 2614-2630.
[5] Wen C G, Lee C S, Development of a cost function for wastewater treatment systems with fuzzy regression[J]. Fuzzy Sets and Systems, 1999, 106(2): 143-153.
[6] 陈以增,唐加福,任立义,等.模糊回归理论在QFD系统建模中的应用研究[J]. 机械工程学报, 2003, 39(4): 25-29. Cheng Yizeng, Tang Jiafu, Ren Liyi, et al. Application research of using fuzzy regression in QFD modeling[J]. Chinese Journal of Mechanical Engineering, 2003, 39(4): 25-29.
[7] 李锡文,杨明金,黎邵平,等.模糊回归分析在平头立铣刀磨损监测中的应用[J]. 华中科技大学学报:自然科学版, 2007, 35(10): 70-73. Li Xiwen, Yang Mingjin, Li Shaoping, et al. Application of fuzzy regression monitoring the flat end mills wear condition[J]. Journal of Huazhong University of Science & Technology: Nature Science Edition, 2007, 35(10): 70-73.
[8] Tanaka H, Uejima S, Asai K. Linear regression analysis with fuzzy model[J]. IEEE Transactions on Systems, Man, and Cybernetics, 1982, 12(6): 903-907.
[9] Tanaka H, Ishibuchi H. Identication of possibilistic linear systems by quadratic membership functions of fuzzy parameters[J]. Fuzzy Sets and Systems, 1991(41): 145-160.
[10] Chang P T, Lee E S. Fuzzy linear regression with spreads unrestricted in sign[J]. Computer & Mathematics with Applications, 1994(28): 61-71.
[11] Diamond P. Fuzzy least squares[J]. Information Sciences, 1988, 46(3): 141-157.
[12] Diamond P, Korner R. Extended fuzzy linear models and least squares estimates[J]. Computers & Mathematics with Applications, 1997, 33(9): 15-32.
[13] Korner R, Nather W. Linear regression with random fuzzy variables: Extended classical estimates, best linear estimates, least squares estimates[J]. Journal of Information Sciences, 1998, 109(1-4): 95-118.
[14] Chang Y H O. Hybrid fuzzy least-squares regression analysis and its reliability measures[J]. Fuzzy Sets and Systems, 2001, 119(2): 225-246.
[15] Apaydin A, Baser F. Hybrid fuzzy least-squares regression analysis in claims reserving with geometric separation method[J]. Insurance: Mathematics and Economics, 2010, 47(2): 113-122.
[16] 梁艳,魏立力.系数为LR-型模糊数的模糊线性最小二乘回归[J]. 模糊系统与数学, 2007, 21(3): 111-117. Liang Yan, Wei Lili. Fuzzy linear least-squares regression with LR-type fuzzy coefficient[J]. Fuzzy Systems and Mathematics, 2007, 21(3): 111-117.
[17] 王宁,张文修. 模糊线性回归模型的约束最小二乘估计[J]. 模糊系统与数学, 2006, 20(5): 117-124. Wang Ning, Zhang Wenxiu. A restricted least squares estimation for fuzzy linear regression models[J]. Fuzzy Systems and Mathematics, 2006, 20(5): 117-124.
[18] 许若宁. 带模糊回归参数的线性回归模型[J]. 模糊系统与数学, 1998, 12(2): 70-77.Xu Ruoning. Fuzzy linear regression with fuzzy regression parameter[J]. Fuzzy Systems and Mathematics, 1998, 12(2): 70-77.
[19] Xu R N, Li C L. Multidimensional least-squares fitting with a fuzzy model[J]. Fuzzy Sets and Systems, 2001, 119(2): 215-223.
[20] 曾文艺,李洪兴,施煜,等.模糊线性回归模型(I)[J]. 北京师范大学学报:自然科学版, 2006, 42(2): 120-125. Zeng Wenyi, Li Hongxing, Shi Yu, et al. Fuzzy linear regression model(I)[J]. Journal of Beijing Normal University: Natural Science, 2006, 42(2): 120-125.
[21] 曾文艺,李洪兴,施煜,等.模糊线性回归模型(II)[J]. 北京师范大学学报:自然科学版, 2006, 42(4): 334-338.Zeng Wenyi, Li Hongxing, Shi Yu, et al. Fuzzy linear regression model(II)[J]. Journal of Beijing Normal University: Natural Science, 2006, 42(4): 334-338.
[22] 郭嗣琮. 基于结构元理论的模糊数学分析原理[M]. 沈阳: 东北大学出版社, 2004. Guo Sicong. Principle of fuzzy mathematical analysis based on structured element[M]. Shenyang: Northeastern University Press, 2004.
[23] 郭嗣琮.模糊数比较与排序的结构元方法[J].系统工程理论与实践, 2009, 29(3): 106-111. Guo Sicong. Comparison and sequencing of fuzzy numbers based on the method of structured element[J]. Systems Engineering—Theory & Practice, 2009, 29(3): 106-111.
[24] 郭嗣琮. 模糊实数空间与[-1,1]上同序单调函数类的同胚[J]. 自然科学进展, 2004, 14(11): 1318-1321. Guo Sicong. Homeomorphic property between fuzzy number space and monotone function with same formal on [ - 1,1][J]. Advances in Natural Science, 2004, 14(11): 1318-1321.
[25] Hung W L, Yang M S. Fuzzy clustering on LR-type fuzzy numbers with an application in Taiwanese tea evaluation[J]. Fuzzy Sets and Systems, 2005, 150(3): 561-577.
[26] Coppi R, D'Urso P, Giordani P, et al. Least squares estimation of a linear regression model with LR fuzzy response[J]. Computational Statistics & Data Analysis, 2006, 51(1): 267-286.
PDF(491 KB)

392

Accesses

0

Citation

Detail

Sections
Recommended

/