Relationship between investor sentiment and stock indices fluctuation based on EEMD

LI He-long, FENG Chun-e

Systems Engineering - Theory & Practice ›› 2014, Vol. 34 ›› Issue (10) : 2495-2503.

PDF(879 KB)
PDF(879 KB)
Systems Engineering - Theory & Practice ›› 2014, Vol. 34 ›› Issue (10) : 2495-2503. DOI: 10.12011/1000-6788(2014)10-2495

Relationship between investor sentiment and stock indices fluctuation based on EEMD

  • LI He-long, FENG Chun-e
Author information +
History +

Abstract

Based on the effectiveness of ensemble empirical mode decomposition (EEMD), we deal with nonlinear and non-stationary financial time series. EEMD is applied to decompose the sequences of investor sentiment and stock indices into several independent intrinsic mode functions (IMF) with different scales and a residual term, to extract the fluctuation characteristics in different time scales of the sequences. And then we reorganize them to three parts: High frequency represents the short-term market fluctuations, low frequency by major events, and long-term trend. Further combined with econometric models, we analyze the fluctuations between investor sentiment and stock indices in different time scales. The empirical results show that the fluctuation relationship between investor sentiment and stock indices in different time scales is significantly different: in short-term, it's a two-way influence; in the medium-term, investor sentiment is ahead of stock indices' fluctuation and in the long-term, it's reverse.

Key words

investor sentiment / stock indices / EEMD / fluctuation

Cite this article

Download Citations
LI He-long , FENG Chun-e. Relationship between investor sentiment and stock indices fluctuation based on EEMD. Systems Engineering - Theory & Practice, 2014, 34(10): 2495-2503 https://doi.org/10.12011/1000-6788(2014)10-2495

References

[1] Lee C, Shleifer A, Thaler R. Investor sentiment and the closed-end fund puzzle[J]. Journal of Finance, 1991, 46(1): 75-109.
[2] Brown G W, Cliff M T. Investor sentiment and the near-term stock market[J]. Journal of Empirical Finance, 2004, 11(1): 1-27.
[3] Brown G W, Cliff M T. Investor sentiment and asset valuation[J]. Journal of Business, 2005, 78(2): 405-440.
[4] Baker M, Wurgler J. Investor sentiment and cross-section of stock returns[J]. Journal of Finance, 2006, 61(4): 1645-1680.
[5] Baker M, Wurgler J. Investor sentiment in the stock market[J]. Journal of Economic Perspectives, 2007, 21(2): 129-152.
[6] Schmeling M. Investor sentiment and stock returns: Some international evidence[J]. Journal of Empirical Finance, 2009, 16(3): 394-408.
[7] Yu J F, Yuan Y. Investor sentiment and the mean-variance relation[J]. Journal of Financial Economics, 2011, 2: 367-381.
[8] Baker M, Wurgler J, Yu Y. Global, local and contagious investor sentiment[J]. Journal of Financial Economics, 2012, 104(2): 272-287.
[9] Chung S L, Hung C H, Yeh C Y. When does investor sentiment predict stock returns?[J]. Journal of Empirical Finance, 2012, 19: 217-240.
[10] 王美今, 孙建军. 中国股市收益、收益波动与投资者情绪[J]. 经济研究, 2004, 39(10): 75-83.Wang Meijin, Sun Jianjun. Stock market returns, volatility and the role of investor sentiment in China[J]. Economic Research Journal, 2004, 39(10): 75-83.
[11] 伍燕然, 韩立岩. 不完全理性、投资者情绪与封闭式基金之谜[J]. 经济研究, 2007, 42(3): 117-129.Wu Yanran, Han Liyan. Imperfect rationality, sentiment and close-end fund puzzle[J]. Economic Research Journal, 2007, 42(3): 117-129.
[12] 张强, 杨淑娥. 噪音交易、投资者情绪波动与股票收益[J]. 系统工程理论与实践, 2009, 29(3): 40-47.Zhang Qiang, Yang Shue. Noise trading, investor sentiment volatility and stock returns[J]. Systems Engineering—Theory & Practice, 2009, 29(3): 40-47.
[13] 蒋玉梅, 王明照. 投资者情绪与股票收益: 总体效应与横截面效应的实证研究[J]. 南开管理评论, 2010, 13(3): 150-160.Jiang Yumei, Wang Mingzhao. Investor sentiment and stock returns: An empirical study on aggregate effects and cross-section effects[J]. Nankai Business Review, 2010, 13(3): 150-160.
[14] 鲁训法, 黎建强. 中国股市指数与投资者情绪指数的相互关系[J]. 系统工程理论与实践, 2012, 32(3): 621-629.Lu Xunfa, Li Jianqiang. Relationship between stock indices and investors' sentiment index in Chinese financial market[J]. Systems Engineering—Theory & Practice, 2012, 32(3): 621-629.
[15] 池丽旭, 张广胜, 庄新田. 投资者情绪指标与股票市场——基于扩展卡尔曼滤波方法的研究[J]. 管理工程学报, 2012, 26(3): 122-128.Chi Lixu, Zhang Guangsheng, Zhuang Xintian. A study on investor sentiment index and Chinese stock market based on the extended kalman filter method[J]. Journal of Industrial Engineering and Engineering Management, 2012, 26(3): 122-128.
[16] Peter E E. Fractal market analysis: Applying chaos theory to investment and economics[M]. New York: John Wiley & Sons, 1994.
[17] Zhang X, Lai K K, Wang S Y. A new approach for crude oil price analysis based on empirical mode decomposition[J]. Energy Economics, 2008, 30(3): 905-918.
[18] Zhang X, Yu L, Wang S Y, et al. Estimating the impact of extreme events on crude oil price: An EMD-based event analysis method[J]. Energy Economics, 2009, 31: 768-778.
[19] 秦宇. 应用经验模态分解的上海股票市场价格趋势分解及周期性分析[J]. 中国管理科学, 2008, 16: 219-225.Qin Yu. Trend-cycle decomposition and cycle analysis of stock price in Shanghai stock market using empirical mode decomposition[J]. Chinese Journal of Management Science, 2008, 16: 219-225.
[20] 阮连法, 包洪洁. 基于经验模态分解的房价周期波动实证分析[J]. 中国管理科学, 2012, 20(3): 41-46.Ruan Lianfa, Bao Hongjie. An empirical analysis on periodic fluctuations of real estate price based on EMD[J]. Chinese Journal of Management Science, 2012, 20(3): 41-46.
[21] 朱帮助, 王平, 魏一鸣. 基于EMD的碳市场价格影响因素多尺度分析[J]. 经济学动态, 2012, 6: 92-97.Zhu Bangzhu, Wang Ping, Wei Yiming. The multi-scales analysis on the influence factors of carbon market price based on EMD[J]. Dynamic Economics, 2012, 6: 92-97.
[22] Huang N E, Shen Z, Long S R, et al. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis[J]. Proceedings of the Royal Society A, Mathematical, Physical and Engineering Sciences, 1998, 454: 903-995.
[23] Huang N E, Shen Z, Long S R. A new view of nonlinear water waves: the Hilbert spectrum[J]. Annual Review of Fluid Mechanics, 1999, 31(1): 417-457.
[24] Wu Z H, Huang N E. A study of characteristics of white noise using the empirical model decomposition method[J]. Proceedings of the Royal Society of London, 2004, 460: 1597-1611.
PDF(879 KB)

446

Accesses

0

Citation

Detail

Sections
Recommended

/