Multiple attribute decision making method with intervals based on Mahalanobis-Taguchi system and TOPSIS method

CHANG Zhi-peng, CHENG Long-sheng, LIU Jia-shu

Systems Engineering - Theory & Practice ›› 2014, Vol. 34 ›› Issue (1) : 168-175.

PDF(602 KB)
PDF(602 KB)
Systems Engineering - Theory & Practice ›› 2014, Vol. 34 ›› Issue (1) : 168-175. DOI: 10.12011/1000-6788(2014)1-168

Multiple attribute decision making method with intervals based on Mahalanobis-Taguchi system and TOPSIS method

  • CHANG Zhi-peng1,2, CHENG Long-sheng1, LIU Jia-shu2
Author information +
History +

Abstract

For the problem of interval numbers multiple attribute decision, this paper proposes a ranking method for interval numbers decision vectors. This method processes the information of interval numbers decision vectors using Mahalanobis-Taguchi system and ranks interval numbers decision vectors using TOPSIS method. In this method, an m-dimensional interval numbers decision vector is regarded as super cuboids in m-dimensional attributes space; some points are uniformly and dispersedly selected by two-level orthogonal arrays. Those points compose of distribution points set to stand for decision making project. The distance of points in distribution points set of decision making project and distribution points set of positive ideal project is calculated with Mahalanobis distance; the closeness degree from decision making project to positive ideal project is defined by signal to noise ratio. The detailed decision making steps are given. Finally, an application example is analyzed. At the same time, the method proposed and others are compared, which shows the effectiveness and feasibility of the method.

Key words

Mahalanobis-Taguchi system / interval numbers / orthogonal arrays / Mahalanobis distance / signal to noise ratio / super cuboids

Cite this article

Download Citations
CHANG Zhi-peng , CHENG Long-sheng , LIU Jia-shu. Multiple attribute decision making method with intervals based on Mahalanobis-Taguchi system and TOPSIS method. Systems Engineering - Theory & Practice, 2014, 34(1): 168-175 https://doi.org/10.12011/1000-6788(2014)1-168

References

[1] 郭辉,徐浩军,刘凌.基于区间数TOPSIS法的空战目标威胁评估[J].系统工程与电子技术, 2009, 31(12): 2914-2917.Guo H, Xu H J, Liu L. Threat assessment for air combat target based on interval TOPSIS[J]. Systems Engineering and Electronics, 2009, 31(12): 2914-2917.
[2] 尤天慧,樊治平.区间数多指标决策的一种TOPSIS方法[J].东北大学学报, 2002, 23(9): 840-843.You T H, Fan Z P. TOPSIS method for multiple attribute decision making with intervals[J]. Journal of Northeastern University, 2002, 23(9): 840-843.
[3] 徐泽水,达庆利.区间数排序的可能度法及其应用[J].系统工程学报, 2003, 18(1): 67-70.Xu Z S, Da Q L. Possibility degree method for ranking interval numbers and its application[J]. Journal of Systems Engineering, 2003, 18(1): 67-70.
[4] 苏志欣,王理,夏国平.区间数动态多属性决策的VIKOR扩展方法[J].控制与决策, 2010, 25(6): 836-840.Su Z X, Wang L, Xia G P. Extended VIKOR method for dynamic multi-attribute decision making with interval numbers[J]. Control and Decision, 2010, 25(6): 836-840.
[5] 肖峻,张跃,付川.基于可能度的区间数排序方法比较[J].天津大学学报, 2011, 44(8): 705-711.Xiao J, Zhang Y, Fu C. Comparison between methods of interval number ranking based on possibility[J]. Journal of Tianjin University, 2011, 44(8): 705-711.
[6] 卫贵武.区间数多指标决策问题的新灰色关联分析法[J].系统工程与电子技术, 2006, 28(9): 1358-1359.Wei G W. New method of grey relational analysis to multiple attribute decision making with intervals[J]. Systems Engineering and Electronics, 2006, 28(9): 1358-1359.
[7] 齐照辉,王祖尧,张为华.基于区间数多属性决策的导弹突防效能评估方法[J].系统工程与电子技术, 2006, 28(11): 1700-1703.Qi Z H, Wang Z Y, Zhang W H. Multiple attribute decision evaluating approach to penetration effectiveness of missile based on interval numbers[J]. Systems Engineering and Electronics, 2006, 28(11): 1700-1703.
[8] 宋业新,尹迪,张建军.一种新的区间数多属性决策的集结方法[J].系统工程与电子技术, 2004, 26(8): 1060-1062.Song Y X, Yin D, Zhang J J. New aggregate method for multiple attribute decision-making with intervals[J]. Systems Engineering and Electronics, 2004, 26(8): 1060-1062.
[9] 王正新,党耀国,宋传平.基于区间数的多目标灰色局势决策模型[J].控制与决策, 2009, 24(3): 388-392.Wang Z X, Dang Y G, Song C P. Multi-objective decision model of grey situation based on interval number[J]. Control and Decision, 2009, 24(3): 388-392.
[10] Taguchi G, Jugulum R. The Mahalanobis-Taguchi strategy: A pattern technology system[M]. John Wiley & Sons, 2002.
[11] 郑称德,韩之俊. MTS原理及其设计模型[J]. 管理工程学报, 2000, 14(3): 43-47.Zhen C D, Han Z J. Theory and design model of Mahalanobis-Taguchi system[J]. Journal of Industrial Engineering and Engineering Management, 2000, 14(3): 43-47.
[12] 张千里. 正交法与应用数学[M]. 北京: 科学出版社, 2009.Zhang Q L. Orthogonal method and applied mathematics[M]. Beijing: Science Press, 2009.
[13] Mahalanobis P C. On the generalized distance in statistics[C]// Proceedings of the National Institute of Sciences of India, 1936(2): 49-55.
[14] 秦庆强,张晓安,李艾华,等. 马氏距离在模拟电路硬故障检测中的应用研究[J].电子测量与仪器学报, 2009, 23(7): 41-45.Qin Q Q, Zhang X A, Li A H, et al. Research on the application of Mahalanobis distance in catastrophic faults detection of analog circuits[J]. Journal of Electronic Measurement and Instrument, 2009, 23(7): 41-45.
[15] 张贤达.矩阵分析与应用[M].北京: 清华大学出版社, 2004.Zhang X D. Matrix analysis and applications[M]. Beijing: Tsinghua University Press, 2004.
[16] Saygin C, Mohan D, Sarangapani J. Real-time detection of grip length during fastening of bolted joints: A Mahalanobis-Taguchi system (MTS) based approach[J]. Journal of Intelligent Manufacturing, 2010, 21(4): 377-392.
[17] 徐泽水.不确定多属性决策方法及应用[M].北京: 清华大学出版社, 2004.Xu Z S. Uncertain multiple attribute decision making: Methods and applications[M]. Beijing: Tsinghua University Press, 2004.
[18] 王育红,党耀国.基于灰色关联系数和D-S证据理论的区间数投资决策方法[J].系统工程理论与实践, 2009, 29(11): 128-134.Wang Y H, Dang Y G. Approach to interval numbers investment decision-making based on grey incidence coefficients and D-S theory of evidence[J]. Systems Engineering——Theory & Practice, 2009, 29(11): 128-134.
[19] 罗党.一类灰色区间聚类决策方法[J]. 郑州大学学报, 2007, 39(1): 119-124.Luo D. The method for grey interval clustering decision[J]. Journal of Zhengzhou University, 2007, 39(1): 119-124.
PDF(602 KB)

417

Accesses

0

Citation

Detail

Sections
Recommended

/