Formation and process model of knowledge networks

LIU Xiang, MA Fei-cheng, WANG Xiao-guang

Systems Engineering - Theory & Practice ›› 2013, Vol. 33 ›› Issue (7) : 1836-1844.

PDF(731 KB)
PDF(731 KB)
Systems Engineering - Theory & Practice ›› 2013, Vol. 33 ›› Issue (7) : 1836-1844. DOI: 10.12011/1000-6788(2013)7-1836

Formation and process model of knowledge networks

  • LIU Xiang1,2, MA Fei-cheng2, WANG Xiao-guang2
Author information +
History +

Abstract

For analyzing the small-world structure and scale-free characteristic of the knowledge networks, a formation model has been constructed. The model firstly chose position vertexes by the strategy of preferential attachment to determine the subject field of the knowledge creator, then randomly chose vertexes in the neighbors of position vertexes, this process could reflect creator's limitation in subject field and the introverted nature of the field. The model can construct networks with character of small-world and scale-free and fit different demand by adjusting the proportion of the above two kinds of vertexes.

Key words

knowledge network / citation network / process model / small-world / scale-free

Cite this article

Download Citations
LIU Xiang , MA Fei-cheng , WANG Xiao-guang. Formation and process model of knowledge networks. Systems Engineering - Theory & Practice, 2013, 33(7): 1836-1844 https://doi.org/10.12011/1000-6788(2013)7-1836

References

[1] Garfield E. Citation indexes for science[J]. Science, 1955, 122: 108-111.

[2] Simon H A. On a class of skew distribution functions[J]. Biometrika, 1955, 42: 425-440.

[3] Price D J. Networks of scientific papers[J]. Science, 1965, 149: 510-515.

[4] Watts D J, Strogatz S H. Collective dynamics of 'small-world' networks[J]. Nature, 1998, 393: 440-442.

[5] Barabási A L, Albert R. Emergence of scaling in random networks[J]. Science, 1999, 286: 509-512.

[6] Cancho R F I, Sole R V. The small world of human language[J]. Proceedings of the Royal Society of London Series B-Biological Sciences, 2001, 268(1482): 2261-2265.

[7] 刘知远, 郑亚斌, 孙茂松. 汉语依存句法网络的复杂网络性质[J].复杂系统与复杂性科学, 2008, 5(2): 1-9.Liu Z Y, Zheng Y B, Sun M S. Complex network properties of Chinese syntactic dependency network[J]. Complex Systems and Complexity Science, 2008, 5(2): 1-9.

[8] Newman M E. The structure and function of complex networks[J]. SIAM Review, 2003, 45(2): 167-256.

[9] 王晓光. 博客社区内的非正式交流:基于网络链接的实证分析[J].情报学报, 2009, 28(2): 248-256.Wang X G. Informal communication in blog community: An empirical analysis of web links[J]. Journal of the China Society for Scientific and Technical Information, 2009, 28(2): 248-256.

[10] 韦洛霞, 李勇, 李伟, 等. 汉字网络的3度分隔与小世界效应[J].科学通报, 2004, 49(24): 2615-2616.Wei L X, Li Y, Li W, et al. 3-degree separation and small-world effect of Chinese character network[J]. Chinese Science Bulletin, 2004, 49(24): 2615-2616.

[11] 马费成. 论情报学的基本原理及理论体系构建[J].情报学报, 2007, 26(1): 3-13.Ma F C. On the basic principles of information science and its construction of theory system[J]. Journal of the China Society for Scientific and Technical Information, 2007, 26(1): 3-13.

[12] Redner S. How popular is your paper? An empirical study of the citation distribution[J]. Euro Phys Jour B, 1998, 4: 131-134.

[13] Barabási A L, Jeong H, Néda Z, et al. Evolution of the social network of scientific collaborations[J]. Physica A: Statistical Mechanics and its Applications, 2002, 311(3-4): 590-614.

[14] Vazquez A. Statistics of citation networks[J]. 2001, Arxiv Preprint Cond-mat/010503.

[15] Newman M E J, Watts D J. Renormalization group analysis of the small-world network model[J]. Phys Lett A, 1999, 263: 341-346.

[16] Price D D S. A general theory of bibliometric and other cumulative advantage processes[J]. Journal of the American Society for Information Science, 1976, 27: 292-306.

[17] Bianconi G, Barabási A L. Bose-Einstein condensation in complex networks[J]. Phys Rev Lett, 2001, 86: 5632-5635.

[18] Fronczak A, Fronczak P, Holyst J A. Mean-field theory for clustering coefficients in Barabási-Albert networks[J]. Phys Rev E, 2003, 68: 046126.

[19] Cohen R, Havlin S. Scale-free networks are ultrasmall[J]. Phys Rev Lett, 2003, 90: 3682-3685.

[20] Barabási A L, Albert R, Jeong H. Mean-field theory for scale-free random networks[J]. Physica A, 1999, 272: 173-187.

[21] Dorogovtsev S N, Mendes J F F, Samukhin A N. Structure of growing networks with preferential linking[J]. Phys Rev Lett, 2000, 85: 4633-4636.

[22] Bollobas B, Riordan O. Mathematical results on scale-free random graphs[M]// Bornholdt S, Schuster H G. Handbook of Graphs and Networks — From the Genome to Internet, Wiley-VCH, 2002: 1-34.

PDF(731 KB)

320

Accesses

0

Citation

Detail

Sections
Recommended

/