A user equilibrium model based on the cumulative prospect theory for a degradable transport network

WANG Qian, ZHOU Jing, XU Wei

Systems Engineering - Theory & Practice ›› 2013, Vol. 33 ›› Issue (6) : 1563-1569.

PDF(617 KB)
PDF(617 KB)
Systems Engineering - Theory & Practice ›› 2013, Vol. 33 ›› Issue (6) : 1563-1569. DOI: 10.12011/1000-6788(2013)6-1563

A user equilibrium model based on the cumulative prospect theory for a degradable transport network

  • WANG Qian, ZHOU Jing, XU Wei
Author information +
History +

Abstract

This paper establishes a user equilibrium model based on the cumulative prospect theory (CPT) for a degradable transport network and shows the solution existence of the model. In numerical experiments, the study calculates the network equilibrium flow pattern based on the expected utility theory (EUT) and CPT, respectively. The results of the comparison between them indicate that the CPT-based model is superior to the EUT-based model in describing the travelers' route choice decision processes.

Key words

cumulative prospect theory / reference point / link capacity degradation / user equilibrium

Cite this article

Download Citations
WANG Qian , ZHOU Jing , XU Wei. A user equilibrium model based on the cumulative prospect theory for a degradable transport network. Systems Engineering - Theory & Practice, 2013, 33(6): 1563-1569 https://doi.org/10.12011/1000-6788(2013)6-1563

References

[1] Clark S, Watling D. Modeling network travel time reliability under stochastic demand[J]. Transportation Research Part B, 2005, 39: 119-140.

[2] Watling D. A second order stochastic network equilibrium model[J]. Transportation Science, 2002, 36(2): 149-166.

[3] Shao H, Lam W H K, Tam M L. A reliability-based stochastic traffic assignment model for network with multiple user classes under uncertainty in demand[J]. Networks and Spatial Economics, 2006, 6: 173-204.

[4] Sumalee A, Kurauchi F. Reliability and emergency issues in transportation network analysis[J]. Networks and Spatial Economics, 2006, 6: 169-172.

[5] Du Z P, Nicholson A. Degradable transportation systems: Sensitivity and reliability analysis[J]. Transportation Research Part B, 1997, 31(3): 225-237.

[6] Lo H K, Tung Y K. A chance constrained network capacity model[M]// Bell M, Cassir C. Reliability of Transport Networks, Chapter 11. Research Studies Press Limited, Baldock, Hertfordshire, England, 2000: 159-172.

[7] Lo H K, Luo X W, Siu B W Y. Degradable transport network: Travel time budget of travelers with heterogeneous risk aversion[J]. Transportation Research Part B, 2006, 40(9): 792-806.

[8] Siu B W Y, Lo H K. Doubly uncertain transportation network: Degradable capacity and stochastic demand[J]. European Journal of Operational Research, 2008, 191: 166-181.

[9] Kahneman D, Tversky A. Prospect theory: An analysis of decisions under risk[J]. Econometrics, 1979, 47: 263-292.

[10] Tversky A, Kahneman D. Advances in prospect theory: Cumulative representation of uncertainty[J]. Journal of Risk and Uncertainty, 1992, 5(4): 297-323.

[11] Avineri E. The effect of reference point on stochastic network equilibrium[J]. Transportation Science, 2006, 40(4): 409-420.

[12] Connors R D, Sumalee A. A network equilibrium model with travelers' perception of stochastic travel times[J]. Transportation Research Part B, 2009, 43(6): 614-624.

[13] 徐红利, 周晶, 陈星光. 基于前景理论的路径选择行为规则分析与实现[J]. 交通运输系统工程与信息, 2007, 7(6): 95-101.Xu H L, Zhou J, Chen X G. Analysis and demonstration of the traveler's route choice behavior rule based on the prospect theory[J]. Journal of Transportation Systems Engineering and Information Technology, 2007, 7(6): 95-101.

[14] 赵凛, 张星臣. 基于"前景理论"的先验信息下出行者路径选择模型[J].交通运输系统工程与信息, 2006, 6(2): 42-46.Zhao L, Zhang X C. A prospect theory-based route choice model of traveler with prior information[J]. Journal of Transportation Systems Engineering and Information Technology, 2006, 6(2): 42-46.

[15] Barberis N, Huang M. Stocks as lotteries: The implications of probability weighting for security prices[R]. Yale School of Management Working Paper, doi:10.2139/ssrn.649421, 2005.

[16] Davies G B, Satchell S E. The behavioral components of risk aversion[J]. Journal of Mathematical Psychology, 2007, 51(1): 1-13.

[17] Xu H L, Lou Y Y, Yin Y F, et al. A prospect-based user equilibrium model with endogenous reference points and its application in congestion pricing[J]. Transportation Research Part B, 2011, 45(2): 311-328.

[18] Smith M J. The existence, uniqueness and stability of traffic equilibria[J]. Transportation Research Part B, 1979, 13(4): 295-304.

PDF(617 KB)

303

Accesses

0

Citation

Detail

Sections
Recommended

/