
Measuring credit risk and economic capital for commercial banks under non-Gaussian data
MU Wen-tao, CHEN Dian-fa, CHEN Ji
Systems Engineering - Theory & Practice ›› 2013, Vol. 33 ›› Issue (6) : 1372-1379.
Measuring credit risk and economic capital for commercial banks under non-Gaussian data
Measuring the credit risk and economic capital is one of the most important aims in risk management for commercial banks. The authors use Johnson transformation to solve the problem of economic capital under non-Gaussian data. By transforming real data to standard normal distribution, the authors overcome the restricts of Monte Carlo simulation in Copula method, which often requires the Gaussian or t distribution. It is convenient to simulate the correlated default time and the economic capital for banks. From the comparative analysis, the Johnson transformation is feasible and reasonable. This paper provides an effective quantitative method in risk management for commercial banks under "Basel Capital Accord" (Basel II) and the algorithm has a certain reference.
credit risk / Copula function / Johnson transformation / Monte Carlo simulation / economic capital {{custom_keyword}} /
[1] Basel Committee on Banking Supervision. International convergence of capital measurement and capital standards — A revised framework comprehensive version[M]. Basel: Bank of International Settlements, 2006.
[2] Nelsen R. An introduction to Copulas[M]. New York: Springer, 1998.
[3] Embrechts P, McNeil A, Straumann D. Correlation: Pitfall and alternatives[J]. Risk Magazine, 1999(5): 69-71.
[4] Li D X. On default correlation: A Copula function approach [R]. RiskMetrics Group, Working Paper, 2000.
[5] De Matteis R. Fitting Copulas to data[D]. IMU Zurich, 2001.
[6] Ane T, Kharoubi C. Dependence structure and risk measure[J]. The Journal of Business, 2003, 76(3): 411-438.
[7] Das S, Geng G. Correlated default processes: A criterion-based Copula approach[J]. Journal of Investment and Management, 2004, 2(2): 44-70.
[8] Kole E, Koedijk K, Verbeek M. Selecting Copulas for risk management[J]. Journal of Banking & Finance, 2007, 31(8): 2405-2423.
[9] 李秀敏, 史道济. 金融市场组合风险的相关性研究[J].系统工程理论与实践, 2007, 27(2): 112-117.Li X M, Shi D J. Research on the correlation of portfolio value at risk in financial markets[J]. Systems Engineering — Theory & Practice, 2007, 27(2): 112-117.
[10] 徐志春. 基于Copula的贷款组合经济资本配置模型及仿真[J]. 武汉理工大学学报:信息与管理工程版, 2008, 30(5): 753-756.Xu Z C. Economic capital allocation model and simulation based on Copula function for loan portfolio[J]. Journal of Wuhan University of Technology: Information & Management Engineering, 2008, 30(5): 753-756.
[11] 白保中, 宋逢明, 朱世武. Copula函数度量我国商业银行资产组合信用风险的实证研究[J]. 金融研究, 2009(4): 129-142.Bai B Z, Song F M, Zhu S W. An empirical study of the measuring of asset portfolio's credit risk of commercial banks by Copula function[J]. Journal of Financial Research, 2009(4): 129-142.
[12] Joe H, Xu J J. The estimation method of inference functions for margins for multivariate models[R]. Department of Statistics, University of British Columbia, Technical Report 166, 1996.
[13] Slifker J F, Shapiro S S. The Johnson system: Selection and parameter estimation[J]. Technometrics, 1980, 22(2): 239-246.
[14] 田新时, 刘汉中. 用Johnson分布族来计算非线性VaR[J]. 运筹与管理, 2002, 11(4): 34-40.Tian X S, Liu H Z. Computing nonlinear VaR with the family of Johnson distributions[J]. Operations Research and Management Science, 2002, 11(4): 34-40.
[15] 范希文, 孙健. 信用衍生品理论与实务——金融创新中的机遇与挑战[M]. 北京: 中国经济出版社, 2010.Fan X W, Sun J. Credit derivatives: Theory and practice — Opportunity and challenges in financial innovations[M]. Beijing: China Economic Publishing House, 2010.
/
〈 |
|
〉 |