
Steam load forecasting based on chaos theory and LSSVM
ZHANG Hua-qiang, ZHANG Xiao-yan
Systems Engineering - Theory & Practice ›› 2013, Vol. 33 ›› Issue (4) : 1058-1066.
Steam load forecasting based on chaos theory and LSSVM
The heating steam is an important secondary energy, so it is of great significance to predict the required steam load in the future hours, which is important for the thermal power plant to provide users with high quality heat load securely and economically. Steam load time series proves to be with chaos characteristics. According to Takens theorem, delay time and embedding dimension are calculated respectively using C-C method and Cao method, and the steam load time series is reconstructed in phase space, and then the steam load forecasting model is established using least squares support vector machine (LSSVM). A SA_WPSO algorithm (improved particle swarm optimization (PSO) with simulated annealing algorithm (SA)) is proposed to implement the optimization of LSSVM parameters. The simulation results show that the method can achieve good prediction results.
chaos / least squares support vector machine (LSSVM) / particle swarm optimization (PSO) / simulated annealing (SA) / forecasting {{custom_keyword}} /
[1] 朱学莉, 齐维贵, 陆亚俊. 建筑供热负荷预报与预测控制策略研究[J]. 控制与决策, 2002, 17: 703-706. Zhu X L, Qi W G, Lu Y J. Heating load prediction and predictive control tactics of heat supply for building[J]. Control and Decision, 2002, 17: 703-706.
[2] 周恩泽, 方修睦. 供暖热水锅炉房的热负荷预测[J]. 哈尔滨建筑大学学报, 2000, 3(3): 56-60. Zhou E Z, Fang X M. The study on heat load forecast of the heating boiler house[J]. Journal of Harbin University of Civil Engineering & Archetecture, 2000, 3(3): 56-60.
[3] 雍静, 吴锐. 住宅计算负荷的回归分析与预测[J]. 低压电器, 2000(4): 37-46. Yong J, Wu R. Regression analysis and prediction of house calculated load[J]. Low Voltage Apparatus, 2000(4): 37-46.
[4] 王亮, 张宏伟, 岳琳, 等. PSO-BP模型在城市用水量短期预测中的应用[J]. 系统工程理论与实践, 2007, 27(9): 165-170. Wang L, Zhang H W, Yue L, et al. Application of PSO-BP model in short term prediction of urban water consumption[J]. Systems Engineering —— Theory & Practice, 2007, 27(9): 165-170.
[5] 古丽扎提·海拉提, 加玛力汗·库马什, 李俊, 等. 热负荷的预测分析[J]. 动力工程, 2009, 29(1): 49-52. Hailati G, Kumashi J, Li J, et al. Prediction analysis of heat load[J]. Journal of Power Engineering, 2009, 29(1): 49-52.
[6] 李元诚, 方廷健, 于尔铿. 短期负荷预测的支持向量机方法研究[J]. 中国电机工程学报, 2003, 23(6): 55-59. Li Y C, Fang T J, Yu E K. Study of support vector machines for short-term load forecasting[J]. Proceedings of the CSEE, 2003, 23(6): 55-59.
[7] 谢宏, 魏江平, 刘鹤立. 短期负荷预测中支持向量机模型的参数选取和优化方法[J]. 中国电机工程学报, 2006, 26(22): 17-22. Xie H, Wei J P, Liu H L. Parameter selection and optimization method of SVM model for short-term load forecasting[J]. Proceedings of the CSEE, 2006, 26(22): 17-22.
[8] Gao Y H, Li Y B. Fault prediction model based on phase space reconstruction and least squares support vector machine[C]// Ninth International Conference on Hybrid Intelligent Systems, 2009: 464-467.
[9] 梁志珊, 王丽敏, 付大鹏, 等. 基于Lyapunov指数的电力系统短期负荷预测[J]. 中国电机工程学报, 1998, 18(5): 368-371. Liang Z S, Wang L M, Fu D P, et al. Electric power system short-term load forecasting using Lyapunov exponents technique[J]. Proceedings of the CSEE, 1998, 18(5): 368-371.
[10] Suykens J A K, Vandewalle J. Least squares support vector machine classifiers[J]. Neural Processing Letters, 1999, 9: 293-300.
[11] Chen Q S, Zhang X, Xiong S H, et al. The combining kernel PCA with PSO-SVM for chaotic time series prediction model[C]// Proceedings of the Eighth International Conference on Machine Learning and Cybernetics, 2009: 467-472.
[12] 王华秋, 曹长修. 基于模拟退火的并行粒子群优化研究[J]. 控制与决策, 2005, 20(5): 500-504. Wang H Q, Cao C X. Parallel particle swarm optimization based on simulated annealing[J]. Control and Decision, 2005, 20(5): 500-504.
/
〈 |
|
〉 |