Local learning semi-supervised multi-class classifier

LÜ Jia, DENG Nai-yang, TIAN Ying-jie, SHAO Yuan-hai, YANG Xin-min

Systems Engineering - Theory & Practice ›› 2013, Vol. 33 ›› Issue (3) : 748-754.

PDF(604 KB)
PDF(604 KB)
Systems Engineering - Theory & Practice ›› 2013, Vol. 33 ›› Issue (3) : 748-754. DOI: 10.12011/1000-6788(2013)3-748

Local learning semi-supervised multi-class classifier

  • LÜ Jia1,2,3, DENG Nai-yang3, TIAN Ying-jie4, SHAO Yuan-hai5, YANG Xin-min6
Author information +
History +

Abstract

Semi-supervised multi-class classification problem opens research focuses in machine learning and pattern recognition, currently it is decomposed into a set of binary classification problems. Two kinds of class label presentation methods that one was class label presentation method of unit disc and the other was that of binary string were proposed for fear that multiple binary classification problems were solved. Besides, local learning has the good feature in semi-supervised binary classification problem. On the basis of it, local learning semi-supervised multi-class classifier was presented in this paper. The effectiveness of the algorithms was confirmed with experiments on benchmark datasets compared to other related algorithms.

Key words

semi-supervised classification / multi-class classifier / local learning / binary string / unit disc

Cite this article

Download Citations
LÜ Jia, DENG Nai-yang, TIAN Ying-jie, SHAO Yuan-hai, YANG Xin-min. Local learning semi-supervised multi-class classifier. Systems Engineering - Theory & Practice, 2013, 33(3): 748-754 https://doi.org/10.12011/1000-6788(2013)3-748

References

[1] 邓乃扬, 田英杰. 数据挖掘中的新方法——支持向量机[M]. 北京: 科学出版社, 2004.Deng N Y, Tian Y J. Novel method in data mining — Support vector machines[M]. Beijing: Science Press, 2004.

[2] 邓乃扬, 田英杰. 支持向量机: 理论、算法与拓展[M]. 北京: 科学出版社, 2009. Deng N Y, Tian Y J. Support vector machines: Theory, algorithms, and extensions[M]. Beijing: Science Press, 2009.

[3] 刘叶青, 刘三阳, 谷明涛. 多项式光滑的半监督支持向量分类机[J]. 系统工程理论与实践, 2009, 29(7): 113-118.Liu Y Q, Liu S Y, Gu M T. Polynomial smooth semi-supervised support vector classifier[J]. Systems Engineering — Theory & Practice, 2009, 29(7): 113-118.

[4] 蒋少华, 桂卫华, 阳春华,等. 基于核主元分析与多支持向量机的监控诊断方法及其应用[J]. 系统工程理论与 实践, 2009, 29(9): 153-159.Jiang S H, Gui W H, Yang C H, et al. Monitoring model based on kernel principal component analysis and multiple support vector machines and its application[J]. Systems Engineering — Theory & Practice, 2009, 29(9): 153-159.

[5] Zhu X J. Semi-supervised learning literature survey[R]. Computer Sciences TR 1530, University of Wisconsin, 2008.

[6] Chapelle O, Scholkopf B, Zien A. Semi-supervised learning[M]. Cambridge: MIT Press, 2006.

[7] Blanchard G, Lee G, Scott C. Semi-supervised novelty detection[J]. Journal of Machine Learning Research, 2010, 11(11): 2973-3009.

[8] Belkin M, Niyogi P, Sindhwani V. Manifold regularization: A geometric framework for learning from labeled and unlabeled examples[J]. Journal of Machine Learning Research, 2006, 7(11): 2399-2434.

[9] Joachims T. Transductive learning via spectral graph partitioning[C]// Proc 20th International Conference on Machine Learning, Morgan Kaufmann, 2003: 290-297.

[10] Zhu X J, Ghahramni Z, Lafferty J. Semi-supervised learning using gaussian fields and harmonic functions[C]// Proc 20th International Conference on Machine Learning, Menlo Park: AAAI Press, 2003: 912-919.

[11] Zhou D Y, Bousquet O, Lal T N, et al. Learning with local and global consistency[C]// Advances in Neural Information Processing Systems 16, Cambridge: MIT Press, 2004: 321-328.

[12] Wu M R, Scholkopf B. Transductive classification via local learning regularization[C]// Proc of the 11th International Conf on Artificial Intelligence and Statistics, Cambridge: MIT Press, 2007: 624-631.

[13] Torralba A, Murphy K P, Freeman W T. Sharing visual features for multiclass and multiview object detection[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2007, 29(5): 854-869.

[14] Xiang S M, Nie F P, Zhang C S. Semi-supervised classification via local spline regression[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2010, 32(11): 2039-2053.

[15] Vapnik V. The nature of statistical learning theory[M]. Berlin: Springer-Verlag, 1995.

[16] Bottou L, Vapnik V. Local learning algorithms[J]. Neural Computation, 1992, 4(6): 888-900.

[17] Vapnik V, Bottou L. Local algorithms for pattern recognition and dependencies estimation[J]. Neural Computation, 1993, 5(6): 893-909.

PDF(604 KB)

289

Accesses

0

Citation

Detail

Sections
Recommended

/