Simulation analysis and heuristic algorithm for reshuffle optimization of import containers in container terminal

ZHOU Peng-fei, LI Pi-an

Systems Engineering - Theory & Practice ›› 2013, Vol. 33 ›› Issue (12) : 3145-3155.

PDF(1595 KB)
PDF(1595 KB)
Systems Engineering - Theory & Practice ›› 2013, Vol. 33 ›› Issue (12) : 3145-3155. DOI: 10.12011/1000-6788(2013)12-3145

Simulation analysis and heuristic algorithm for reshuffle optimization of import containers in container terminal

  • ZHOU Peng-fei, LI Pi-an
Author information +
History +

Abstract

One of the most important objectives of operations optimization in container terminal is to reduce the reshuffle ratio, whose important way is reshuffle optimization during picking up import containers. Based on analyzing the actual reshuffles of import containers in container yard, a simulation model of reshuffle process is proposed with Petri-net. Using simulation, the paper analyzes the correlation probability of reshuffles and its factors. Then a relocation probability estimate method is suggested with the main influencing factors. A total least-reshuffle-estimate rule based heuristic algorithm for reshuffle optimization of import containers. Simulation experiments results show that the accuracy of proposed algorithm can be 15% times more than OH and IH algorithm while solving larger-scale problems.

Key words

container terminal / reshuffle optimization / simulation / heuristic algorithm / Petri-net

Cite this article

Download Citations
ZHOU Peng-fei , LI Pi-an. Simulation analysis and heuristic algorithm for reshuffle optimization of import containers in container terminal. Systems Engineering - Theory & Practice, 2013, 33(12): 3145-3155 https://doi.org/10.12011/1000-6788(2013)12-3145

References

[1] Lee Y, Hsu N Y. An optimization model for the container pre-marshalling problem[J]. Computers and Operations Research, 2007, 34(11): 3295-3313.
[2] Lee Y, Chao S L. A neighborhood search heuristic for pre-marshalling export container[J]. European Journal of Operational Research, 2009, 196(2): 468-475.
[3] Yang J, Kim K. A grouped storage method for minimizing relocation in block stacking systems[J]. Journal of Intelligent Manufacturing, 2006, 17(4): 453-463.
[4] Kim K H, Hong G P. A heuristic rule for relocating blocks[J]. Computers and Operations Research, 2006, 33(4): 940-954.
[5] 徐亚,陈秋双,龙磊,等.集装箱倒箱问题的启发式算法研究[J].系统仿真学报, 2008, 20(14): 3666-3669.Xu Y, Chen Q S, Long L, et al. Heuristics for container relocation problem[J]. Journal of System Simulation, 2008, 20(14): 3666-3669.
[6] Kim K H. Evaluation of the number of rehandles in container yards[J]. Computers and Industrial Engineering, 1997, 32(4): 701-711.
[7] Kim K H, Kim H B. Segregating space allocation models for container inventories in port container terminals[J]. International Journal of Production Economics, 1999, 59(1): 415-423.
[8] Kim K H, Park Y M, Ryu K R. Deriving decision rules to locate export containers in container yards[J]. European Journal of Operational Research, 2000, 124(2): 89-101.
[9] Zhang C, Chen W, Shi L, et al. A note on deriving decision rules to locate export containers in container yards[J]. European Journal of Operational Research, 2010, 205(2): 483-485.
[10] 王斌.集装箱码头堆场的一种动态随机堆存方法[J].系统工程理论与实践, 2007, 27(4): 147-153.Wang B. Dynamic and stochastic storage model in a container yard[J]. Systems Engineering—Theory & Practice, 2007, 27(4): 147-153.
[11] 周鹏飞.面向不确定环境的集装箱码头优化调度研究[D].大连:大连理工大学, 2005.Zhou P F. Study on resource allocation under uncertainty environments in container terminal[D]. Dalian: Dalian University of Technology, 2005.
[12] 王新颖.集装箱场站翻箱率仿真研究[D].大连:大连海事大学, 2008.Wang X Y. Study on the transposition rate simulation in the container station[D]. Dalian: Dalian Maritime University, 2008.
[13] 陈秋琳,杨勇生,杨斌.基于HTPN的集装箱码头进口箱作业流程建模与仿真[J]. 物流工程与管理, 2009, 31(3): 79-81.Chen Q L, Yang Y S, Yang B. Modeling and simulation on operation process of import container in container terminal based on HTPN [J]. Logistics Engineering and Management, 2009, 31(3): 79-81.
[14] 黄良文.统计学原理问题研究[M]. 1版.北京:中国统计出版社, 1988.
[15] 张敏,袁辉.拉依达(Pa\={u}Ta)准则与异常值剔除[J].郑州工业大学学报, 1997, 18(1): 84-88.Zhang M, Yuan H. The Pa\={u}Ta criterion and rejecting the abnormal value[J]. Journal of Zhengzhou University of Technology, 1997, 18(1): 84-88.
[16] 满敬銮,杨薇.基于多重共线性的处理方法[J].数学理论与应用, 2010, 30(2): 105-109.Man J L, Yang W. Based on multiple collinearity processing method[J]. Mathematical Theory and Applications, 2010, 30(2): 105-109.
PDF(1595 KB)

756

Accesses

0

Citation

Detail

Sections
Recommended

/