Technological developments and changes in relative prices lead to changes in the entire production structure. It is not easy to inversely derive the causes of changes from given changes of input-output coefficient matrix. RAS algorithm is a method to update and levelling typical input-out table. The paper attempts to expand this algorithm for the analysis model of changes in the industrial structure, and to decompose the input coefficient changes into column-specific, row-specific and cell-specific changes without setting industrial structure changes by demand-driven or supply-driven in advance. After that, quantitative analysis about changes in the industrial structure and the reasons of them in China is done in this paper. We find that while industrial structure in China is developing sophisticatedly, labor-intensive industries grow in a high rate, which reflects imbalanced regional development of Chinese economy, and the effect of internalization from industrial upgrading into regional industrial transfer.
Key words
economics structure /
input-output /
RAS
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
References
[1] De Mesnard L. Bicausative matrices to measure structural change: Are they a good tool?[J] The Annals of Regional Science, 2000, 34(3): 421-449.
[2] De Mesnard L. Biproportional methods of structural change analysis: A typological survey[J]. Economic Systems Research, 2004, 16(2): 205-230.
[3] Van der Linden J, Dietzenbacher E. The nature of changes in the EU cost structure of production 1965-85: An RAS approach[M]//Armstrong H W, Vickerman R W. Convergence and Divergence among European Regions, Pion Limited, London, 1995: 124-139.
[4] Van der Linden J, Dietzenbacher E. The determinants of structural change in the European Union: A new application of RAS[J]. Environment and Planning A, 2000, 32(12): 2205-2229.
[5] Stone R. Input-output and national accounts[M]. Paris: Organization for European Economic Cooperation, 1961.
[6] Bacharach M. Biproportional matrices and input-output change[M]. Cambridge: Cambridge University Press, 1970.
[7] 万兴, 范金, 胡汉辉. 社会核算矩阵不同更新方法的比较研究[J].统计研究, 2010(2): 77-82.Wan X, Fan J, Hu H H. Research on comparing social accounting matrix updating methods[J]. Statistical Research, 2010(2): 77-82.
[8] 范金, 万兴. 投入产出表和社会核算矩阵更新研究评述[J].数量经济技术经济研究, 2007(5): 151-160.Fan J, Wan X. Review of updating input-output table and social accounting matrices[J]. The Journal of Quantitative & Technical Economics, 2007(5): 151-160.
[9] 胡兆光,谭显东.直接消耗系数的组合更新法研究[J].统计研究, 2008(3): 71-74.Hu Z G, Tan X D. Study on a combined method for updating direct consumption coefficients[J]. Statistical Research, 2008(3): 71-74.
[10] Allen R I G, Lecomber J R C. Some tests of a generalized version of RAS[M]//Allen R I G, Gossling W F. Estimating and Projecting Input-Output Coefficients, London, Input-Output Publishing Company, 1975: 43-56.
[11] Lynch R G. An assessment of the RAS method for updating input-output tables[M]//Sohn I. Readings in Input-Output Analysis: Theory and Applications, Oxford University Press, New York, 1986: 271-284.
[12] Lecomber J R C. A critique of methods of adjusting updating and projecting matrices[M]//Allen R I G, Gossling W F. Estimating and Projecting Input-Output Coefficients, London, Input-Output Publishing Company, 1975: 1-24.
[13] Miernyk W H. Leontief and dynamic regional models[M] Dietzenbacher E, Lahr M L. Wassily Leontief and Input-Output Economics, Cambridge, UK: Cambridge University Press, 2004: 90-101.
[14] 许健, 肖丽. RAS法真实误差的实证研究[J]. 数学的实践与认识, 2008(15): 102-108. Xu J, Xiao L. An empirical analysis on real error of RAS method[J]. Mathematics in Practice and Theory, 2008(15): 102-108.
[15] Ahmed S A, Preckel P V. A comparison of RAS and entropy methods in updating IO tables[C]//American Agricultural Economics Association Annual Meeting, 2007.
{{custom_fnGroup.title_en}}
Footnotes
{{custom_fn.content}}