Operational pattern hierarchical matching and evolution strategy for copper flash smelting process

GUI Wei-hua, LIU Jian-hua, XIE Yong-fang

Systems Engineering - Theory & Practice ›› 2013, Vol. 33 ›› Issue (10) : 2714-2720.

PDF(675 KB)
PDF(675 KB)
Systems Engineering - Theory & Practice ›› 2013, Vol. 33 ›› Issue (10) : 2714-2720. DOI: 10.12011/1000-6788(2013)10-2714

Operational pattern hierarchical matching and evolution strategy for copper flash smelting process

  • GUI Wei-hua, LIU Jian-hua, XIE Yong-fang
Author information +
History +

Abstract

Considering the difficulties of modeling, online-measurement of key process indexes, and optimal control in copper ash smelting process, a data-driven operational pattern optimization control strategy is discussed. Based on the formed superior operational pattern base, the method of hierarchical operational pattern matching and the strategy of operational pattern evolution are presented. The superior operational pattern base is constructed based on comprehensive status evaluation model and pattern classification methods. The projection pursuit regression model is established with the retrieved similar operational pattern set obtained by hierarchical matching. Then the optimal operational parameters are optimized by using the real coding based acceleration genetic algorithm. The simulation results of actual running data are given to verify the feasibility of the strategy proposed.

Key words

data-driven / operational pattern / optimal control / projection pursuit regression / copper flash smelting

Cite this article

Download Citations
GUI Wei-hua , LIU Jian-hua , XIE Yong-fang. Operational pattern hierarchical matching and evolution strategy for copper flash smelting process. Systems Engineering - Theory & Practice, 2013, 33(10): 2714-2720 https://doi.org/10.12011/1000-6788(2013)10-2714

References

[1] Higgins D R, Gray N B, Davidson M R. Simulating particle agglomeration in the flash smelting reaction shaft[J]. Minerals Engineering, 2009, 22(14): 1251-1265.
[2] Gui W H, Wang L Y, Yang C H, et al. Intelligent prediction model of matte grade in copper flash smelting process[J]. Transactions of Nonferrous Metals Society of China, 2007, 17(5): 1075-1081.
[3] Sanchez-Corrales V M, Valera-Gonzalez J A, Perez-Tello M, et al. Mass balance calculations in copper flash smelting by means of genetic algorithms[J]. JOM Journal of the Minerals, Metals and Materials Society, 2004, 56(12): 29-32.
[4] 喻寿益, 王吉林, 彭晓波. 基于神经网络的铜闪速熔炼过程工艺参数预测模型[J]. 中南大学学报:自然科学版, 2007, 38(3): 523-527.Yu S Y, Wang J L, Peng X B. Prediction model of craft parameters based on neural network during the process of copper flash smelting[J]. Journal of Central South University: Science and Technology, 2007, 38(3): 523-527.
[5] Peng X B, Gui W H, Li Y G, et al. Operational pattern optimization for copper flash smelting process based on pattern decomposition of fuzzy neural networks[C]// 2007 IEEE International Conference on Control and Automation, Guangzhou, China, May 30-June 1, 2007: 2328-2333.
[6] 桂卫华, 阳春华, 李勇刚, 等. 基于数据驱动的铜闪速熔炼过程操作模式优化及应用[J]. 自动化学报, 2009, 35(6): 717-724.Gui W H, Yang C H, Li Y G, et al. Data-driven operational pattern optimization for copper flash smelting process[J]. Acta Automatica Sinica, 2009, 35(6): 717-724.
[7] Bian F P, Cui L Y, Lessner L. DEA-based anti-HIV immunotherapy model[J]. Progress in Natural Science, 2004, 14(9): 828-832.
[8] 柴天佑. 生产制造全流程优化控制对控制与优化理论方法的挑战[J]. 自动化学报, 2009, 35(6): 641-649.Chai T Y. Challenges of optimal control for plant-wide production processes in terms of control and optimization theories[J]. Acta Automatica Sinica, 2009, 35(6): 641-649.
[9] Tang M Z, Yang C H, Gui W H, et al. Data-based process fault detection using active cost-sensitive learning[C]// 2010 the 2nd International Conference on Information Science and Engineering, Hangzhou, China, Dec 4-6, 2010: 1110-1113.
[10] 唐明珠, 阳春华, 桂卫华, 等. 代价敏感概率神经网络及其在故障诊断中的应用[J]. 控制与决策, 2010, 25(7): 1074-1078.Tang M Z, Yang C H, Gui W H, et al. Cost-sensitive probabilistic neural network with its application in fault diagnosis[J]. Control and Decision, 2010, 25(7): 1074-1078.
[11] 金菊良, 杨晓华, 丁晶. 标准遗传算法的改进方案-加速遗传算法[J]. 系统工程理论与实践, 2001, 21(4): 8-13.Jin J L, Yang X H, Ding J. An improved simple genetic algorithm-Accelerating genetic algorithm[J]. Systems Engineering-Theory & Practice, 2001, 21(4): 8-13.
[12] 胡志坤, 桂卫华, 阳春华, 等. 铜转炉吹炼过程熔剂加入量的模糊操作模式挖掘方法[J]. 控制与决策, 2010, 25(11): 1689-1692.Hu Z K, Gui W H, Yang C H, et al. A mining method for fuzzy operational patterns of the amount of flux in the process of copper converter[J]. Control and Decision, 2010, 25(11): 1689-1692.
[13] Qi X N, Liu Z Y, Li D D. Prediction of the performance of a shower cooling tower based on projection pursuit regression[J]. Applied Thermal Engineering, 2008, 28(8-9): 1031-1038.
[14] Hwang J N, Lay S R, Maechler M, et al. Regression modeling in back-propagation and projection pursuit learning[J]. IEEE Transactions on Neural Networks, 1994, 5(3): 342-353.
[15] 张欣莉, 丁晶. 参数投影寻踪回归及其在年径流预测中的应用[J]. 四川大学学报:工程科学版, 2000, 32(3): 13-15.Zhang X L, Ding J. Parametric projection pursuit regression and its application in prediction year-runoff[J]. Journal of Sichuan University: Engineering Science Edition, 2000, 32(3): 13-15.
PDF(675 KB)

339

Accesses

0

Citation

Detail

Sections
Recommended

/