Impulsive synchronous control of unified chaotic systems with variable delays

CHEN Yuan-qiang, XU Hong-lei

Systems Engineering - Theory & Practice ›› 2012, Vol. 32 ›› Issue (9) : 1958-1963.

PDF(732 KB)
PDF(732 KB)
Systems Engineering - Theory & Practice ›› 2012, Vol. 32 ›› Issue (9) : 1958-1963. DOI: 10.12011/1000-6788(2012)9-1958

Impulsive synchronous control of unified chaotic systems with variable delays

  • CHEN Yuan-qiang1, XU Hong-lei2
Author information +
History +

Abstract

The problem of impulsive synchronous control of unified chaotic systems with parameter uncertainty and variable delays is studied. On the case that the master system's delay is different from that of the slave system, sufficient conditions for their uniform asymptotical synchronization are developed by employing the Lyapunov stability theory and matrix inquality techniques, and the impulsive controllers with respect to delays and initial value of systems are designed. Finally, the validity of the obtained results is shown by a numerical example and its simulation.

Key words

impulsive control / uniform asymptotical synchronization / unified chaotic systems / time-invariant delay

Cite this article

Download Citations
CHEN Yuan-qiang , XU Hong-lei. Impulsive synchronous control of unified chaotic systems with variable delays. Systems Engineering - Theory & Practice, 2012, 32(9): 1958-1963 https://doi.org/10.12011/1000-6788(2012)9-1958

References

[1] Chen G R, Ueta T. Yet another chaotic attractor[J]. International Journal of Bifurcation and Chaos, 1999, 9(7): 1465-1466.
[2] Lu J H, Chen G R, Chen D, et al. Bridge the gap between the Lorenz system and the Chen system[J]. International Journal of Bifurcation and Chaos, 2002, 12: 2917-2926.
[3] 陶朝海,陆君安,吕金虎.统一混沌系统的反馈同步[J].物理学报, 2002, 51(7): 1497-1501.Tao C H, Lu J A, Lü J H. The feedback synchronization of a unified chaotic system[J]. Acta Physica Sinica, 2002, 51(7): 1497-1501.
[4] Lu J H, Chen G R. A new chaotic attractor coined[J]. International Journal of Bifurcation and Chaos, 2002, 12(3): 659-661.
[5] Lu J A, Tao C H, et al. Parameter identification and tracking of a unified system[J]. Chinese Physics Letters, 2002, 19(5): 632-635.
[6] Ju H P. Stability criterion for synchronization of linearly coupled unified chaotic systems[J]. Chaos, Solitons & Fractals, 2005, 23(4): 1319-1325.
[7] Feng C F. Projective synchronization between two different time-delayed chaotic systems using active control approach[J]. Nonlinear Dynamics, 2010, 62: 453-459.
[8] 王燕舞,关志洪,王华. 统一混沌系统的脉冲控制与同步[J]. 原子能科学技术, 2004, 38(3): 256-260.Wang Y W, Guan Z H, Wang H. Impulsive control and synchronization of unified systems[J]. Atomic Energy Science and Technology, 2004, 38(3): 256-260.
[9] 罗润梓. 一个新混沌系统的脉冲控制与同步[J]. 物理学报, 2007, 56(10): 5655-5660.Luo R Z. Impulsive control and synchronization of a new chaotic system[J]. Acta Physica Sinica, 2007, 56(10): 5655-5660.
[10] Li C D, Liao X F, Yang X F, et al. Impulsive stabilization and synchronization of a class of chaotic delay systems[J]. Chaos Woodbury Ny, 2005, 15(4): 043103.
[11] Chen Y S, Chang C C. Impulsive synchronization of Lipschitz chaotic systems[J]. Chaos Solitons Fractals, 2009, 40(3): 1221-1228.
[12] Ma T D, Zhang H G. Robust impulsive synchronization for a class of unified chaotic systems with parameter uncertainty[J]. World, 2008(1): 15114-15118.
[13] Cao J D, Ho Daniel W C, Yang Y Q. Projective synchronization of a class of delayed chaotic systems via impulsive control[J]. Physics Letters A, 2009, 375(35): 3128-3133.
[14] Zhang H G, Ma T D, Huang G B, et al. Robust global exponential synchronization of uncertain chaotic delayed neural networks via dual-stage impulsive control[J]. IEEE Transactions on Systems, Man, and Cybernetics —— Part B: Cybernetics, 2010, 40(3): 831-844.
[15] Yang T. Impulsive control[J]. IEEE Transactions on Automatic Control, 1999, 44: 1081-1083.
[16] Liu X Z, Ballinger G. Uniform asymptotic stability of impulsive delay differential equations[J]. Computer and Mathematics with Applications, 2001, 41: 903-915.
[17] Xu H L, Liu X Z, Teo K L. Robust stabilization with definite attendance of uncertain impulsive switched systems[J]. Journal of Anziam, 2005, 46: 471-484.
[18] Xu H L, Liu X Z, Teo K L. Delay independent stability criteria of impulsive switched systems with time-invariant delays[J]. Mathematical and Computer Modelling, 2008, 47: 372-379.
PDF(732 KB)

261

Accesses

0

Citation

Detail

Sections
Recommended

/