Traffic flow distribution models based on time and path preference and inducement strategy

XU Yin-feng, YU Hai-yan, SU Bing, ZHANG Hui-li

Systems Engineering - Theory & Practice ›› 2012, Vol. 32 ›› Issue (10) : 2306-2314.

PDF(728 KB)
PDF(728 KB)
Systems Engineering - Theory & Practice ›› 2012, Vol. 32 ›› Issue (10) : 2306-2314. DOI: 10.12011/1000-6788(2012)10-2306

Traffic flow distribution models based on time and path preference and inducement strategy

  • XU Yin-feng1,2,3, YU Hai-yan1,2,3, SU Bing4, ZHANG Hui-li1,2,3
Author information +
History +

Abstract

Considering whether the travelers have path preference or time preference, we establish four traffic distribution models in four different situations. Through analyzing the characters of these four models, we present the methods to solve these models. Then we study the relationship among the total travel time in these four situations, and derive the time inducement strategy and the path inducement strategy. Taking the traffic flow in Xi'an at Tomb-sweeping Day as an example, we simulate and analyze the traffic distribution in three situations. And this example indicates that the time inducement strategy and the path inducement strategy are valid.

Key words

traffic flow distribution / time preference / path preference / inducement strategy

Cite this article

Download Citations
XU Yin-feng , YU Hai-yan , SU Bing , ZHANG Hui-li. Traffic flow distribution models based on time and path preference and inducement strategy. Systems Engineering - Theory & Practice, 2012, 32(10): 2306-2314 https://doi.org/10.12011/1000-6788(2012)10-2306

References

[1] Wardrop J G. Some theoretical aspects of road traffic research[C]// Proceedings of Institution of Civil Engineers, Part II, 1: 325-378.
[2] Beckmann M J, McGuire C B, Winsten C B. Studies in the Economics of Transportation[M]. Yale University Press, 1956.
[3] LeBlanc L J, Morlok E K, Pierskalla W P. An efficient approach to solving the road network equilibrium traffic assignment problem[J]. Transportation Research, 1975, 9(5): 309-318.
[4] Smith M J. The existence, uniqueness and stability of traffic equilibria[J]. Transportation Research Part B, 1979, 13(4): 295-304.
[5] Dafermos S C. Traffic equilibrium and variational inequalities[J]. Transportation Science, 1980, 14: 42-54.
[6] Dafermos S C. An iterative scheme for variational inequalities[J]. Mathematical Programming, 1983, 26(1): 40-47.
[7] Roughgarden T, Tardos E. How bad is selfish routing[J]. Journal of the ACM, 2002, 49(2): 236-259.
[8] 邓卫, 王炜. 用神经网络方法处理固定需求交通平衡分配问题[J]. 中国公路学报, 1997, 10(1): 84-89.Deng W, Wang W. Parallel processing method on neural network for traffic equilibrium assignment problem[J]. China Journal of Highway and Transport, 1997, 10(1): 84-89.
[9] 陈彦如, 蒲云. 用遗传算法解决固定需求交通平衡分配问题[J]. 西南交通大学学报, 2000, 35(1): 44-47.Chen Y R, Pu Y. Solving traffic equilibrium assignment problem with genetic algorithm[J]. Journal of Southwest Jiaotong University, 2000, 35(1): 44-47.
[10] 杨晓光, 褚浩然. 错峰出行对城市交通的影响分析[J]. 同济大学学报:自然科学版, 2006, 34(7): 899-903.Yang X G, Chu H R. Study on macro-travel impact analysis of staggered shifts[J]. Journal of Tongji University: Natural Science, 2006, 34(7): 899-903.
[11] 褚浩然, 杨晓光. "错峰出行"制度的作用机理及交通可行性研究——以上海为例[J]. 交通运输系统工程与信息, 2005, 5(3): 77-81.Chu H R, Yang X G. Effect mechanism of stagger shifts and its traffic feasibility — A case study of Shanghai[J]. Communication and Transportation Systems Engineering and Information, 2005, 5(3): 77-81.
[12] 黄海军. 城市交通网络平衡分析理论与实践[M]. 北京:人民交通出版社出版, 1994.Huang H J. Urban Transportation Network Equilibrium Analysis: Theory and Practice[M]. Beijing: China Communications Press, 1994.
[13] 邓华生. 基于时间的交通影响范围量化方法的研究[J]. 中外公路, 2006, 26(3): 292-295. Deng H S. Research on the quantity method to measure the effect of traffic based on time[J]. Journal of China & Foreign Highway, 2006, 26(3): 292-295.
PDF(728 KB)

315

Accesses

0

Citation

Detail

Sections
Recommended

/