Comparative research between VaR and ES on international nonferrous metals futures market

YANG Xian, LUFeng-bin, WANG Shou-yang

Systems Engineering - Theory & Practice ›› 2011, Vol. 31 ›› Issue (9) : 1645-1651.

PDF(1272 KB)
PDF(1272 KB)
Systems Engineering - Theory & Practice ›› 2011, Vol. 31 ›› Issue (9) : 1645-1651. DOI: 10.12011/1000-6788(2011)9-1645

Comparative research between VaR and ES on international nonferrous metals futures market

  • YANG Xian1, LUFeng-bin2, WANG Shou-yang2
Author information +
History +

Abstract

In view that the volatility of International Nonferrous Metals Market has direct and profound impact on the cost of production and the development of economy in China, we estimated the VaR of the futures market using Historical Simulation (HS), Monte Carlo method (MC), Exponentially Weighted Moving Average approach (EWMA), Equally Weighted approach (EWA), GARCH and Extreme Value Theory (EVT) separately. Then, we estimated the ES of the futures market based on EVT. Finally, we adopted backtest to evaluate the power of each method. Our findings indicate that ES is better than VaR in evaluating market risks when there is a sharp fall or rise in commodity prices; GARCH and EWMA gain an advantage over the other four methods with a 95% level of confidence; EWMA, GARCH and HS gain an advantage over the other three methods with a 99% level of confidence.

Key words

VaR / ES / nonparametric method / parametric method / nonferrous metals / futures market

Cite this article

Download Citations
YANG Xian, LUFeng-bin, WANG Shou-yang. Comparative research between VaR and ES on international nonferrous metals futures market. Systems Engineering - Theory & Practice, 2011, 31(9): 1645-1651 https://doi.org/10.12011/1000-6788(2011)9-1645

References

[1] Artzner P, Delbaen F, Eber J M, et al. Thinking coherently[J]. Risk, 1997, 10(11): 68-71.

[2] Bouchaud J P, Potters M.Worse fluctuation method for fast Value at Risk estimates[EB/OL]. www.gloriamundi.org.

[3] 范英. 股市风险值估计的EWMA方法及其应用[J]. 预测, 2001, 20(3): 34-37. Fan Y. EWMA method for estimating VaR of stock market and its application[J]. Forecasting, 2001, 20(3): 34-37.

[4] 叶青. 基于GARCH和半参数法的VaR模型及其在中国股市风险分析中的应用[J]. 统计研究, 2000(12): 25-29. Ye Q. VaR model based on GARCH and semi-parameter approach and its application on Chinese stock market[J]. Statistical Research, 2000(12): 25-29.

[5] 陈守东, 俞世典. 基于GARCH模型的VaR方法对中国股市的分析[J]. 吉林大学社会科学学报, 2002(4): 11-17. Chen S D, Yu S D. The analysis on Chinese stock market using VaR based on GARCH model[J]. Jilin University Journal Social Sciences Edition, 2002(4): 11-17.

[6] 龚锐, 陈仲常, 杨栋锐. GARCH族模型计算中国股市在险价值(VaR)风险的比较研究与评述[J]. 数量经济技术经济研究, 2005(7): 67-81. Gong R, Chen Z C, Yang D R. To evaluate VaR of China stock marketing comparatively by using GARCH family model and comment[J]. The Journal of Quantitative and Technical Economics, 2005(7): 67-81.

[7] 詹原瑞,田宏伟.极值理论(EVT)方法在汇率受险价值(VaR)计算中的应用[J]. 系统工程理论与实践, 2000, 20(10): 27-35. Zhan Y R, Tian H W. Empirical analysis of value-at-risk estimation methods using extreme value theory[J]. Systems Engineering — Theory & Practice, 2000, 20(10): 27-35.

[8] 余炜彬, 范英, 魏一鸣. 基于极值理论的原油市场价格风险VaR的研究[J]. 系统工程理论与实践, 2007, 27(8): 12-20. Yu W B, Fan Y, Wei Y M. Price risk in crude oil markets: A VaR approach of EVT[J]. Systems Engineering — Theory & Practice, 2007, 27(8): 12-20.

[9] 肖智, 傅肖肖, 钟波. 基于EVT-POT-FIGARCH的动态VaR风险测度[J]. 南开管理评论, 2008, 11(4): 100-104. Xiao Z, Fu X X, Zhong B. Dynamic VaR risk measures based on EVT-POT-FIGARCH[J]. Nankai Business Review, 2008, 11(4): 100-104.

[10] Fan J Q, Gu J. Semiparametric estimation of Value at Risk[J]. Econometrics Journal, 2003, 6(2): 261-290.

[11] 刘向丽, 成思危, 汪寿阳, 等. 参数法、半参数法和非参数法计算我国铜期货市场VaR之比较[J]. 管理评论, 2008, 20(6): 3-8. Liu X L, Cheng S W, Wang S Y, et al. The comparison of Chinese copper futures market VaR estimation using parametric method, semiparametric method and nonparametric method[J]. Management Review, 2008, 20(6): 3-8.

[12] 刘子斐, 史敬. VaR模型比较技术及其评价——理论、实证回顾及其应用初探[J]. 金融研究, 2008, 335(5): 130-137. Liu Z F, Shi J. Backtesting and evaluating VaR model: A survey[J]. Financial Research, 2008, 335(5): 130-137.

[13] Acerbi C, Tasche D. On the coherence of expected shortfall[J]. Journal of Banking and Finance, 2002, 26(5): 1487-1503.

[14] Yamai Y, Yoshiba T. On the validity of value-at-risk: Comparative analyses with expected shortfall[J]. Monetary and Economic Studies, 2002, 20(1): 57-86.

[15] 徐绪松, 王频. 中国股票市场ES和VaR的实证比较分析[J]. 技术经济, 2006, 25(12): 1-6. Xu X S,Wang P. An empirically comparative analysis between ES and VaR on China stock market[J]. Technology Economic, 2006, 25(12): 1-6.

[16] 陈守东, 孔繁利, 胡铮洋. 基于极值分布理论的VaR与ES度量[J]. 数量经济技术经济研究, 2007(3): 118-124. Chen S D, Kong F L, Hu Z Y. Computing VaR and ES based-on EVT[J]. The Journal of Quantitative and Technical Economics, 2007(3): 118-124.

[17] 刘庆富, 仲伟俊, 梅姝娥. 基于VaR-GARCH模型族的我国期铜市场风险度量研究[J]. 系统工程学报, 2006, 21(4): 429-433. Liu Q F, Zhong W J, Mei S E. Market risk measurement of copper futures in China based on VaR-GARCH models[J]. Journal of Systems Engineering, 2006, 21(4): 429-433.

[18] 何冬黎. 基于VaR的我国沪铝期货市场风险度量实证研究[D]. 青岛: 青岛大学, 2006. He D L. Empirical study on risk measurement based on VaR of aluminum future market in China[D]. Qingdao: Qingdao University, 2006.

[19] 伊晟. VaR在我国有色金属期货市场风险预测中的应用研究[D]. 昆明: 昆明理工大学, 2007. Yi S. Empirical study on risk measurement based on VaR of Chinese nonferrous metal future market[D]. Kunming: Kunming University of Science and Technology, 2007.

[20] Neftci S N. Value at risk calculations, extreme events, and tail estimation[J]. Journal of Derivatives, 2000(4): 23-28.

[21] Kupiec P H. Techniques for verifying the accuracy of risk measurement models[J]. Journal of Derivatives, 1995, 3(2): 73-84.
PDF(1272 KB)

440

Accesses

0

Citation

Detail

Sections
Recommended

/