互联互通背景下我国内地与香港股市间风险溢出效应研究

王建立, 王燕, 董明华

系统工程理论与实践 ›› 2025, Vol. 45 ›› Issue (3) : 801-815.

PDF(928 KB)
PDF(928 KB)
系统工程理论与实践 ›› 2025, Vol. 45 ›› Issue (3) : 801-815. DOI: 10.12011/SETP2023-2368
论文

互联互通背景下我国内地与香港股市间风险溢出效应研究

    王建立, 王燕, 董明华
作者信息 +

Risk spillovers among Chinese mainland and Hong Kong stock markets in the context of connectivity

    WANG Jianli, WANG Yan, DONG Minghua
Author information +
文章历史 +

摘要

我国多层次资本市场不断完善, 沪港通、基金互认、债券通、深港通、跨境理财通等系列制度不断推进内地和香港金融市场的互联互通.在这一背景下, 本文选取沪深主板、创业板、中小板、新三板以及香港主板五大股市, 构建方差分解溢出指数, 从时域和频域两方面深入考察我国股市间跨市场跨地区的波动溢出关系, 并对总溢出效应的影响因素进行实证检验.研究结果表明:我国股市间具有显著的跨市场跨地区溢出效应, 其中香港主板一直是溢出净接收者, 这说明互联互通机制推动下大陆股市对香港主板的影响较大;另外, 时域总溢出与长期总溢出水平的时间序列演进过程高度协同, 但在不同时期表现出异质性, 特别是, 深港通的启动对我国股市系统性风险产生了短期影响, 增加了短期溢出水平;科创板的推出则使得短期总溢出水平占优于长期.通过对总溢出效应的相关影响因素进行回归分析, 发现人民币对港币汇率和消费者信心指数这两大因素显著影响着我国内地多层次市场和香港市场间的波动溢出程度.

Abstract

China's multi-level capital market has been improving continuously, and a series of measures, such as Shanghai-Hong Kong Stock Connect, mutual recognition of funds, Bond Connect, Shenzhen-Hong Kong Stock Connect, and Cross-border Wealth Management Connect, continue to promote the connection between Chinese mainland and Hong Kong financial markets. This paper selects five major stock markets, namely, Shanghai and Shenzhen Main Board, Growth Enterprise Market (GEM), Small and Medium Enterprise Board (SME board), New OTC Market and Hong Kong Main Board, to construct the variance decomposition spillover index and examine the volatility spillover relationship between China's stock markets across markets and regions in both time and frequency domains. It also empirically tests the influencing factors of the total spillover effect. The results show that: There is a significant cross-market and cross-region spillover effect between China's stock markets; Hong Kong's Main Board has been a net recipient of spillovers, which suggests that Chinese mainland stock market has a greater impact on Hong Kong's Main Board; furthermore, the time-series evolution process of the total spillover in the time domain and the level of the total risk spillover in the long run is highly synergistic, but shows particular heterogeneity in different periods. In particular, the launch of the Shenzhen-Hong Kong Stock Connect has had a short-term impact on the systemic risk of China's stock market, increasing the short-term risk spillover level; the launch of the Science and Innovation Board (S&T Board) makes the short-term total spillover level dominate over the long-term. A regression analysis of the relevant influencing factors of the aggregate spillover effect reveals that two major factors, the exchange rate of RMB to HKD and the consumer confidence index, significantly affect the spillover effect among Chinese mainland and Hong Kong financial markets.

关键词

风险溢出 / 深港通 / 人民币汇率 / 香港主板

Key words

risk spillover / Shenzhen-Hong Kong Stock Connect / RMB exchange rate / Hong Kong Main Board

引用本文

导出引用
王建立 , 王燕 , 董明华. 互联互通背景下我国内地与香港股市间风险溢出效应研究. 系统工程理论与实践, 2025, 45(3): 801-815 https://doi.org/10.12011/SETP2023-2368
WANG Jianli , WANG Yan , DONG Minghua. Risk spillovers among Chinese mainland and Hong Kong stock markets in the context of connectivity. Systems Engineering - Theory & Practice, 2025, 45(3): 801-815 https://doi.org/10.12011/SETP2023-2368
中图分类号: F830.9   

参考文献

[1] 刘超, 郭亚东. 多时间尺度下行业间系统性金融风险溢出及拓扑结构分析 [J]. 中国管理科学, 2022, 30(10): 46-59. Liu C, Guo Y D. Systemic financial risk spillover and its topology analysis of sector indexes in China under a multi-scale view[J]. Chinese Journal of Management Science, 2022, 30(10): 46-59.
[2] Bollerslev T. Generalized autoregressive conditional heteroskedasticity[J]. Journal of Econometrics, 1986, 31(3): 307-327.
[3] Acharya V, Engle R, Richardson M. Capital shortfall: A new approach to ranking and regulating systemic risks[J]. The American Economic Review, 2012, 102(3): 59-64.
[4] Adrian T, Brunnermeier M. CoVaR[J]. The American Economic Review, 2016, 106(7): 1705-1741.
[5] Banulescu G D, Dumitrescu E I. Which are the SIFIs? A component expected shortfall approach to systemic risk[J]. Journal of Banking and Finance, 2015, 50: 575-588.
[6] Denisa B, Christophe H, Jérémy L, et al. Backtesting marginal expected shortfall and related systemic risk measures[J]. Management Science, 2020, 67(9): 5730-5754.
[7] López-Espinosa G, Moreno A, Rubia A, et al. Short-term wholesale funding and systemic risk: A global CoVaR approach[J]. Journal of Banking and Finance, 2012, 36(12): 3150-3162.
[8] Diebold F X, Yilmaz K. Measuring financial asset return and volatility spillovers, with application to global equity markets[J]. The Economic Journal, 2009, 119(534): 158-171.
[9] Diebold F X, Yilmaz K. Better to give than to receive: Predictive directional measurement of volatility spillovers[J]. International Journal of Forecasting, 2012, 28: 57-66.
[10] Diebold F X, Yilmaz K. On the network topology of variance decompositions: Measuring the connectedness of financial firms[J]. Journal of Econometrics, 2014, 42(1): 119-134.
[11] Wen F H, Cao J H, Liu Z, et al. Dynamic volatility spillovers and investment strategies between the Chinese stock market and commodity markets[J]. International Review of Financial Analysis, 2021, 76: 101772.
[12] 龚旭, 刘堂勇, 文凤华. 国际与中国原油市场间的波动率动态溢出分析 [J]. 管理科学学报, 2023, 26(11): 125-141.Gong X, Liu T Y, Wen F H. Dynamic volatility spillovers between international crude oil futures and China crude oil spot[J]. Journal of Management Sciences in China, 2023, 26(11): 125-141.
[13] 梁琪, 李政, 郝项超. 我国系统重要性金融机构的识别与监管——基于系统性风险指数SRISK方法的分析 [J]. 金融研究, 2013(9): 56-70.Liang Q, Li Z, Hao X C. The identification and regulation of domestic systemically important financial institutions of China—A research based on Systemic Risk Index[J]. Journal of Financial Research, 2013(9): 56-70.
[14] 周天芸, 杨子晖, 余洁宜. 机构关联、 风险溢出与中国金融系统性风险 [J]. 统计研究, 2014, 31(11): 43-49.Zhou T Y, Yang Z H, Yu J Y. Interconnectedness、 risk spillovers and China's financial systemic risk[J]. Statistical Research, 2014, 31(11): 43-49.
[15] 杨子晖, 陈雨恬, 谢锐楷. 我国金融机构系统性金融风险度量与跨部门风险溢出效应研究 [J]. 金融研究, 2018(10): 19-37.Yang Z H, Chen Y T, Xie R K. Research on systemic risk measures and cross-sector risk spillover effect of financial institutions in China[J]. Journal of Financial Research, 2018(10): 19-37.
[16] 宫晓莉, 熊熊, 张维. 我国金融机构系统性风险度量与外溢效应研究 [J]. 管理世界, 2020, 36(8): 65-82.Gong X L, Xiong X, Zhang W. Research on systemic risk measurement and spillover effects of financial institutions in China[J]. Management World, 2020, 36(8): 65-82.
[17] 熊正德, 韩丽君. 金融市场间波动溢出效应研究 —— GC-MSV模型及其应用 [J]. 中国管理科学, 2013, 21(2): 32-41.Xiong Z D, Han L J. An empirical study on the volatility spillover effect between financial markets—GC-MSV model and application[J]. Chinese Journal of Management Science, 2013, 21(2): 32-41.
[18] 刘超, 徐君慧, 周文文. 中国金融市场的风险溢出效应研究——基于溢出指数和复杂网络方法 [J]. 系统工程理论与实践, 2017, 37(4): 831-842.Liu C, Xu J H, Zhou W W. Study on risk spillover effect of financial markets in China based on methods of spillover index and complex network[J]. Systems Engineering—Theory & Practice, 2017, 37(4): 831-842.
[19] 何枫, 郝晶, 谭德凯, 等. 中国金融市场联动特征与系统性风险识别 [J]. 系统工程理论与实践, 2022, 42(2): 289-305.He F, Hao J, Tan D K, et al. Chinese financial markets connectedness and systemic risk identification[J]. Systems Engineering—Theory & Practice, 2022, 42(2): 289-305.
[20] 刘志峰, 张子汸, 戴鹏飞, 等. 碳市场与股票市场间的崩盘风险溢出效应研究: 新冠疫情、 投资者情绪与经济政策不确定性 [J]. 系统工程理论与实践, 2023, 43(3): 740-754.Liu Z F, Zhang Z P, Dai P F, et al. A study on the spillover effect of crash risk between carbon and stock markets: COVID-19, investor sentiment and economic policy uncertainty[J]. Systems Engineering—Theory & Practice, 2023, 43(3): 740-754.
[21] 耿志祥, 孙祁祥. 金融危机和自然灾害对保险股票市场的影响与溢出效应检验 [J]. 金融研究, 2016(5): 65-81.Geng Z X, Sun Q X. The impact of financial crisis and catastrophes on the insurer stock market and its testing of spillovers effects[J]. Journal of Financial Research, 2016(5): 65-81.
[22] 袁圆, 戚逸康. 金融危机和地产调控冲击下地产板块和整体股市的波动性研究 [J]. 统计研究, 2019, 36(2): 38-49.Yuan Y, Qi Y K. An empirical study on the volatility of the real estate sector and overall stock market in the shocks of financial crisis and real estate regulations[J]. Statistical Research, 2019, 36(2): 38-49.
[23] 周孝华, 陈九生. 基于Copula-ASV-EVT-CoVaR模型的中小板与创业板风险溢出度量研究 [J]. 系统工程理论与实践, 2016, 36(3): 559-568.Zhou X H, Chen J S. Study on the risk spillover effect between the small and medium-sized board market and the second board market in China based on Copula-ASV-EVT-CoVaR model[J]. Systems Engineering—Theory & Practice, 2016, 36(3): 559-568.
[24] 李红权, 洪永淼, 汪寿阳. 我国A股市场与美股、 港股的互动关系研究: 基于信息溢出视角 [J]. 经济研究, 2011, 46(8): 15-25.Li H Q, Hong Y M, Wang S Y. Information spillover among China's A-shares market, US stock market and HK stock market[J]. Economic Research Journal, 2011, 46(8): 15-25.
[25] 吴吉林, 陈刚, 黄辰. 中国A、 B、 H股市间尾部相依性的趋势研究——基于多机制平滑转换混合Copula模型的实证分析 [J]. 管理科学学报, 2015, 18(2): 50-65.Wu J L, Chen G, Huang C. Long-term dynamic trends in tail dependence of Chinese A, B and H stock markets: Empirical analysis based on multi-regime smoothing transition mixed Copula model[J]. Journal of Management Sciences in China, 2015, 18(2): 50-65.
[26] 周开国, 杨海生, 伍颖华. 中国香港股票市场的溢出效应和收益引导角色——基于亚太地区股票市场的分析 [J]. 管理科学学报, 2018, 21(5): 22-43.Zhou K G, Yang H S, Wu Y H. Spillover effects and the leading role of Hong Kong stock market: Analysis of Asian-pacific stock markets[J]. Journal of Management Sciences in China, 2018, 21(5): 22-43.
[27] 王鹏, 吴金宴. 基于协高阶矩视角的沪港股市风险传染分析 [J]. 管理科学学报, 2018, 21(6): 29-42.Wang P, Wu J Y. Risk contagion between Shanghai and Hong Kong stock market: A perspective of higher order co-ments[J]. Journal of Management Sciences in China, 2018, 21(6): 29-42.
[28] 林娟, 赵海龙. 沪深股市和香港股市的风险溢出效应研究——基于时变ΔCoVaR模型的分析 [J]. 系统工程理论与实践, 2020, 40(6): 1533-1544.Lin J, Zhao H L. Research on the risk spillovers between Shanghai, Shenzhen and Hong Kong stock markets—Based on the time varying ΔCoVaR model[J]. Systems Engineering—Theory & Practice, 2020, 40(6): 1533-1544.
[29] Baruník J, Krehlík T. Measuring the frequency dynamics of financial connectedness and systemic risk[J]. Journal of Financial Econometrics, 2018, 16(2): 271-296.
[30] Gillaizeau M, Jayasekera R, Maaitah A, et al. Giver and the receiver: Understanding spillover effects and predictive power in cross-market bitcoin prices[J]. International Review of Financial Analysis, 2019, 63: 86-104.
[31] 古志辉, 曹廷求, 郝项超. 李约瑟之谜再思考: 儒家抑制创新了么? [J]. 管理科学学报, 2023, 26(9): 1-22. Gu Z H, Cao T Q, Hao X C. Rethinking needham paradox: Does confucianism restrain innovation?[J]. Journal of Management Sciences in China, 2023, 26(9): 1-22.

基金

国家自然科学基金(72071109,71901123,72141304,71532009);科技部重点研发项目课题(2022YFC3303304)
PDF(928 KB)

208

Accesses

0

Citation

Detail

段落导航
相关文章

/