本文对具有多重休假特性和弹性服务机制排队模型中的顾客行为进行均衡分析及定价策略的研究. 系统中存在两个服务台, 服务台数量会根据系统中的顾客数进行调整. 在客户较少时, 仅开设一个服务台提供服务, 服务空竭后服务台休假. 一次休假结束时, 如果系统处于人流高峰期, 为提高服务效率, 增强顾客的满意度, 两个服务台同时对外提供服务. 在完全可见和几乎可见情形下, 根据线性“报酬-损失”理论构建效用函数, 寻求个体的最优策略和统筹全局的社会最优收益. 此外, 通过设置定价策略, 寻求整体社会福利的最大化. 最后, 运用实证分析并结合遗传优化算法对顾客及社会福利的最优解进行性能分析.
Abstract
In this paper, the customers' equilibrium and pricing strategy in queueing model with multiple vacation and elastic service mechanism are analyzed. There are two servers in the queueing system, the servers switch of whenever the number of customers reach a given threshold . Only one server is available when there are few customers. The servers start its vacation when the system is empty. At the end of a vacation, if the system is in peak traffic, in order to increase the efficiency and improve customers satisfaction, two servers will be available at the same time. The equilibrium balking strategies of customers and the optimal social benefits of the system are discussed under the linear reward-cost structure in the fully observable case and the almost observable case. In addition, set pricing strategy is beneficial to maximize social welfare. Finally, a performance analysis of the optimal solutions for customer and social welfare is illustrated by using specific example data combined with a genetic algorithm.
关键词
休假排队 /
弹性服务机制 /
均衡策略 /
定价策略 /
优化
{{custom_keyword}} /
Key words
vacation queue /
elastic service mechanism /
equilibrium strategy /
pricing strategy /
optimization
{{custom_keyword}} /
中图分类号:
O226
{{custom_clc.code}}
({{custom_clc.text}})
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] Naor P. The regulation of queue size by levying tolls[J]. Econometrica:Journal of the Econometric Society, 1969, 37(1):15-24.
[2] Edelson N M, Hilderbrand D K. Congestion tolls for Poisson queuing processes[J]. Econometrica:Journal of the Econometric Society, 1975, 43(1):81-92.
[3] Lippman S A, Stidham S. Individual versus social optimization in exponential congestion systems[J]. Operations Research, 1977, 25(2):233-247.
[4] 刘健,徐勇,张珣,等.基于异质性顾客心理期望等待时间的优先权服务定价研究[J].中国管理科学, 2022, 30(1):275-286. Liu J, Xu Y, Zhang X, et al. Priority pricing based on the expected waiting time for heterogeneous customers[J]. Chinese Journal of Management Science, 2022, 30(1):275-286.
[5] 王钟彬.基于"云排队"的经济效益分析[J].中国管理科学, 2022, 30(7):121-129. Wang Z B. The economics of cloud queueing system[J]. Chinese Journal of Management Science, 2022, 30(7):121-129.
[6] 李世勇,张芷源,孙微.部分服务员休假M/M/c可视排队系统中的顾客行为与定价策略研究[J].系统科学与数学, 2022, 42(5):1282-1299. Li S Y, Zhang Z Y, Sun W. Customer behavior and pricing strategy in the observable M/M/c queue with vacations of partial servers[J]. Journal of Systems Science and Mathematical Sciences, 2022, 42(5):1282-1299.
[7] 孙微,王豪,李世勇.部分服务员休假的M/M/c排队系统中的顾客行为及定价策略研究[J].系统工程理论与实践, 2022, 42(3):767-777. Sun W, Wang H, Li S Y. Customer behavior and pricing strategy in the M/M/c queue with vacations of partial servers[J]. Systems Engineering-Theory&Practice, 2022, 42(3):767-777.
[8] Zhang F, Wang J T, Liu B. Equilibrium balking strategies in Markovian queues with working vacations[J]. Applied Mathematical Modelling, 2013, 37(16-17):8264-8282.
[9] 田瑞玲,王亚利.具有启动时间的M/M/1休假排队的顾客最优策略研究[J].河南师范大学学报(自然科学版). 2020, 48(1):11-17. Tian R L, Wang Y L. Analysis of optimal strategies for customers in the M/M/1 queue with a single vacation and setup times[J]. Journal of Henan Normal University (Natural Science Edition), 2020, 48(1):11-17.
[10] 杨顺利,田乃硕. N-策略工作休假M/M/1排队[J].运筹与管理, 2007, 16(4):50-55. Yang S L, Tian N S. The M/M/1 queue with working vacations and N-policy[J]. Operations Research and Management Science, 2007, 16(4):50-55.
[11] 魏瑛源,唐应辉,余玅妙.基于Min (N, D)-策略的M/G/1排队系统的队长分布及最优策略[J].系统科学与数学, 2015, 35(6):729-744. Wei Y Y, Tang Y H, Yu M M. Queue length distribution and optimum policy for M/G/1 queueing system under Min (N, D)-policy[J]. Journal of Systems Science and Mathematical Sciences, 2015, 35(6):729-744.
[12] 王敏,唐应辉.基于Min (N, D, V)-策略和单重休假的M/G/1排队系统的最优控制策略[J].系统科学与数学, 2018, 38(9):1067-1084. Wang M, Tang Y H. Optimal control policy of M/G/1 queueing system based on Min (N, D, V)-policy and single server vacation[J]. Journal of Systems Science and Mathematical Sciences, 2018, 38(9):1067-1084.
[13] Guo P, Hassin R. Strategic behavior and social optimization in Markovian vacation queues[J]. Operations Research, 2011, 59(4):986-997.
[14] Guo P, Hassin R. Strategic behavior and social optimization in Markovian vacation queues:The case of heterogeneous customer[J]. European Journal of Operational Research, 2012, 222(2):278-286.
[15] 刘维奇,马庆庆,李继红. N-策略工作休假M/M/1排队系统中的顾客行为研究[J].系统工程理论与实践, 2016, 36(7):1848-1856. Liu W Q, Ma Q Q, Li J H. Analysis of customer behaviors in an M/M/1 queueing systems with N-policy and working vacation[J]. Systems Engineering-Theory&Practice, 2016, 36(7):1848-1856.
[16] 张博,李凯.不可观察的N-策略工作休假M/M/1/Q排队系统分析[J].合肥工业大学学报(自然科学版), 2021, 44(12):1710-1715. Zhang B, Li K. Analysis of an unobservable M/M/1/Q queueing system with N-policy and working vacation[J]. Journal of Heifei University of Technology (Natural Science), 2021, 44(12):1710-1715.
[17] Wang J T, Zhang X L, Huang P. Strategic behavior and social optimization in a constant retrial queue with the N-policy[J]. European Journal Operational Research, 2017, 256(3):841-849.
[18] Sun W, Zhang Z Y, Li S Y. Comparisons of customer balking behavior in observable queues with N policies and geometric abandonments[J]. Quality Technology&Quantitative Management. 2022:2101338.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}
基金
国家自然科学基金(62171143);河北省自然科学基金(G2024203008)
{{custom_fund}}