首次在均值-方差效用下研究了带有死亡风险的退休后最优投资和年金化比例决策. 假设在退休时刻, 退休者按一定的比例将累积财富购买一个即期终身年金, 之后终身获得一个年金收入, 并将消费后的财富进行相应的投资决策, 直到死亡时刻为止, 以最优化遗产效用的均值-方差效用. 利用拉格朗日乘子法、动态规划方法和数值分析方法, 分两步骤得到了最优的投资和年金化比例策略. 利用数值分析技术, 分析了遗产动机、退休者预期寿命以及退休年龄对最优投资金额、年金化比例和最优值函数的影响, 部分结果验证了年金产品能降低退休者的投资风险. 本文的理论结果表明, 退休后风险管理常用的目标定位模型所得结果是均值-方差模型所得结果的特殊情形;数值分析结果表明, 与传统的目标定位模型相比, 均值-方差模型在大部分情况下能降低遗产水平低于预设目标值的发生概率, 同时能大幅度提高遗产水平远超预设目标值的概率.
Abstract
This paper first adopts the mean-variance criterion to study the optimal portfolio selection and annuitization proportion post-retirement with mortality risk. Assume that at retirement, the retiree spends a proportion of her accumulated wealth on a lifetime immediate annuity. Then the retiree will receive a lifetime income and invests her wealth after consumption in the available assets until death in order to optimize the mean-variance utility of her bequest. By Lagrange multiplier technique, dynamic programming and numerical analysis, we obtain the optimal investment strategy and annuitization proportion in two steps. Furthermore, numerical examples are provided to analyze the effects of the bequest motivate, the expected lifespan and the retirement age on the optimal investment strategy, annuitization proportion and the optimal value function. Some results show that the annuity product can reduce the investment risk of the retirees. The mathematical results in this paper show that the obtained results in the target-based model commonly used in the post-retirement risk management are special cases of those in the mean-variance model; the numerical results indicate that in most cases, the mean-variance model can reduce the probability that the bequest level is lower than the pre-determined target value meanwhile can greatly increase the probability that the bequest level is far beyond the target value.
关键词
领取阶段 /
最优投资金额 /
最优年金化比例 /
均值-方差模型 /
动态规划方法
{{custom_keyword}} /
Key words
decumulation phase /
optimal investment amount /
optimal annuitization proportion /
mean-variance model /
dynamic programming
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 何林,冷嫣然.基于CPT效用的养老金补缴内涵价值分析——以山东省1978年-2016年经验数据为例[J].管理科学学报, 2020, 23(4):65-79. He L, Leng Y R. An intrinsic value analysis of one-time endowment payment policy based on CPT utility:Taking Shandong Province's 1978-2016 empirical data as an example[J]. Journal of Management Sciences in China, 2020, 23(4):65-79.
[2] 邱牧远,王天宇,梁润.延迟退休、人力资本投资与养老金财政平衡[J].经济研究, 2020, 9:122-137. Qiu M Y, Wang T Y, Liang R. Raising retirement age, human capital accumulation and fiscal balance of pension[J]. Economic Research Journal, 2020, 9:122-137.
[3] 陈峥,李仲飞.目标日期基金应对养老金投资的有效性及最优策略选择[J].系统工程理论与实践, 2022, 42(12):3231-3246. Chen Z, Li Z F. The effectiveness and optimal investment strategy of target date fund to deal with pension management[J]. Systems Engineering-Theory&Practice, 2022, 42(12):3231-3246.
[4] 史爱玲,李仲飞.带遗产动机和最低业绩约束的DC型养老金的优化投资问题[J].系统科学与数学, 2021, 41(7):1905-1926. Shi A L, Li Z F. Optimal investment strategy of DC pension plan with bequest motivation and minimum performance constraints[J]. Journal of Systems Science and Mathematical Sciences, 2021, 41(7):1905-1926.
[5] Milevsky M A, Moore K S, Young V R. Asset allocation and ruin-minimization annuitization strategies[J]. Mathematical Finance, 2006, 16(4):647-671.
[6] Wang T, Young V R. Optimal commutable annuities to minimize the probability of lifetime ruin[J]. Insurance:Mathematics and Economics, 2012, 50(1):200-216.
[7] Zhang X Y, Guo J Y. The role of inflation-indexed bond in optimal management of defined contribution pension plan during the decumulation phase[J]. Risk, 2018, 6(2). doi:10.3390/risks6020024.
[8] Gerrard R, Haberman S, and Vigna E. Optimal investment choices post-retirement in a defined contribution pension scheme[J]. Insurance:Mathematics and Economics, 2004, 35:321-342.
[9] Di Giacinto M, Federico S, Gozzi F, et al. Income drawdown option with minimum guarantee[J]. European Journal of Operational Research, 2014, 234:610-624.
[10] 伍慧玲,董洪斌.带有通胀风险的退休后期最优投资管理[J].系统工程理论与实践, 2018, 38(8):1930-1945. Wu H L, Dong H B. Optimal investment strategies post retirement with inflation risk[J]. Systems Engineering-Theory&Practice, 2018, 38(8):1930-1945.
[11] Lin C W, Zeng L, Wu H L. Multi-period portfolio optimization in a defined contribution pension plan during the decumulation phase[J]. Journal of Industrial and Management Optimization, 2019, 15(1):401-427.
[12] Dadashi H. Optimal investment strategy post retirement without ruin possibility:A numerical algorithm[J]. Journal of Computational and Applied Mathematics, 2020, 363:325-336.
[13] Wu H L, Wang X G, Liu Y Y, et al. Multi-period optimal investment choice post-retirement with inter-temporal restrictions in a defined contribution pension plan[J]. Journal of Industrial and Management Optimization, 2020, 16(6):2857-2890.
[14] 伍慧玲,李方博,姚海祥.带有下方风险控制的退休后最优投资决策[J].系统科学与数学, 2023, 43(5):1157-1176. Wu H L, Li F B, Yao H X. Optimal investment choices post-retirement with downside risk control[J]. Journal of Systems Science and Mathematical Sciences, 2023, 43(5):1157-1176.
[15] Hainaut D, Devolder P. Life annuitization:Why and how much?[J]. ASTIN Bulletin, 2006, 36(2):629-654.
[16] Delong L, Chen A. Asset allocation, sustainable withdrawal, longevity risk and non-exponential discounting[J]. Insurance:Mathematics and Economics, 2016, 71:342-352.
[17] Ai J, Brockett P L, Golden L L, et al. Health state transitions and longevity effects on retirees' optimal annuitization[J]. Journal of Risk and Insurance, 2017, 84:319-343.
[18] Gerrard R, Haberman S, Vigna E. The management of decumulation risks in a defined contribution pension plan[J]. North American Actuarial Journal, 2006, 10(1):84-110.
[19] Emms P. Relative choice models for income drawdown in a defined contribution pension scheme[J]. North American Actuarial Journal, 2010, 14(2):176-197.
[20] Zhang X Y. Optimal DC pension management under inflation risk with jump diffusion price index and cost of living process[J]. Methodology and Computing in Applied Probability, 2022, 24:1253-1270.
[21] Dadashi H. Optimal investment-consumption problem:Post-retirement with minimum guarantee[J]. Insurance:Mathematics and Economics, 2020, 94:160-181.
[22] 伍慧玲,王静,王秀国,等.带有通胀风险的退休后最优投资-年金化时刻决策[J].运筹与管理, 2022, 31(7):124-130. Wu H L, Wang J, Wang X G, et al. Optimal investment and timing of annuitization post retirement with inflation risk[J]. Operations Research and Management Science, 2022, 31(7):124-130.
[23] Stabile G. Optimal timing of the annuity purchase:Combined stochastic control and optimal stopping problem[J]. International Journal of Theoretical and Applied Finance, 2006, 9:151-170.
[24] Milevsky M A, Young V R. Annuitization and asset allocation[J]. Journal of Economic Dynamics and Control, 2007, 31:3138-3177.
[25] Liang X Q, Peng X F, Guo J Y. Optimal investment, consumption and timing of annuity purchase under a preference change[J]. Journal of Mathematical Analysis and Applications, 2014, 413:905-938.
[26] Gerrard R, Højgaard B, Vigna E. Choosing the optimal annuitization time post-retirement[J]. Quantitative Finance, 2012, 12(7):1143-1159.
[27] Liang X Q, Young V R. Annuitization and asset allocation under exponential utility[J]. Insurance:Mathematics and Economics, 2018, 79:167-183.
[28] Han N W, Hung M W. The annuity puzzle and consumption hump under ambiguous life expectancy[J]. Insurance:Mathematics and Economics, 2021, 100:76-88.
[29] Hainaut D, Deelstra G. Optimal timing for annuitization, based on jump diffusion fund and stochastic mortality[J]. Journal of Economic Dynamics&Control, 2014, 44:124-146.
[30] Angelis T D, Stabile G. On the free boundary of an annuity purchase[J]. Finance Stochastic, 2019, 23:97-137.
[31] Lockwood L M. Bequest motives and the annuity puzzle[J]. Review of Economic Dynamics, 2012, 15:226-243.
[32] Li D, Ng W L. Optimal dynamic portfolio selection:Multi-period mean-variance formulation[J]. Mathematical Finance, 2000, 10(3):387-406.
[33] Pedersen J L, Peskir G. Optimal mean-variance portfolio selection[J]. Mathematics and Financial Economics, 2017, 11:137-160.
[34] Trybua J, Zawisza D. Continuous-time portfolio choice under monotone mean-variance preferences-stochastic factor case[J]. Mathematics of Operations Research, 2019, 44(3):966-987.
[35] Bernheim B D. How strong are bequest motives:Evidence based on estimates of the demand for life insurance and annuities[J]. Journal of Political Economy, 1991, 99(5):899-927.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}
基金
国家自然科学基金(11671411);中央高校基本科研业务费专项资金;中央财经大学科研创新团队支持计划项目;教育部人文社会科学重点研究基地重大项目(22JJD790091);保险风险分析与决策学科创新引智基地(B17050)
{{custom_fund}}