基于冲突分析图模型的多无人机协同空战博弈

黄宇铭, 葛冰峰, 侯泽强, 杨克巍

系统工程理论与实践 ›› 2023, Vol. 43 ›› Issue (9) : 2714-2725.

PDF(610 KB)
PDF(610 KB)
系统工程理论与实践 ›› 2023, Vol. 43 ›› Issue (9) : 2714-2725. DOI: 10.12011/SETP2022-1406
论文

基于冲突分析图模型的多无人机协同空战博弈

    黄宇铭, 葛冰峰, 侯泽强, 杨克巍
作者信息 +

Multi-unmanned aerial vehicle cooperative air combat gaming based on graph model for conflict resolution

    HUANG Yuming, GE Bingfeng, HOU Zeqiang, YANG Kewei
Author information +
文章历史 +

摘要

多无人机集群协同空战将是未来重要的空中作战样式. 本文针对多无人机空战的对抗性、 复杂性和协同性等特点, 提出了基于冲突分析图模型的多无人机协同空战博弈方法, 以提升空战效能. 首先, 考虑多无人机空战的协同作用, 构建单机空战优势和多机协同空战优势评估模型; 其次, 基于冲突分析图模型理论, 建立考虑多种稳定性定义的多无人机空战博弈模型, 并在模型中引入基于"伤损比"的收益函数; 最后, 设计了两阶段多机空战博弈目标分配方案求解算法, 即利用多目标优化算法获取多机空战对抗场景的帕累托前沿, 再通过冲突分析图模型方法求解帕累托前沿中的最优均衡目标分配方案. 算例结果表明, 本文所提模型和方法能够有效解决多无人机协同空战问题, 所得到的最优目标分配方案优于传统仅考虑纳什稳定性的无人机博弈模型, 对实际空战具有一定的指导意义.

Abstract

Multi-unmanned aerial vehicle (UAV) cooperative air combat will be an important air combat style in the future. Considering the antagonism, complexity and coordination, a gaming approach based on graph model for conflict resolution (GMCR) for multi-UAV cooperative air combat is proposed to improve its effectiveness. Firstly, the single-UAV air combat superiority model and multi-UAV air combat superiority model are proposed by taking the synergism into consideration. Secondly, a multi-UAV air combat gaming model with a group of stability definitions is developed based on GMCR, and a payoff function using "damage loss ratio" is introduced into the model. Finally, a two-stage multi-UAV air combat gaming target assignment algorithm is designed, where a multi-objective optimization algorithm is applied to obtain the Pareto frontier of multi-UAV air combat confrontation scenario, and then the optimal equilibrium target allocation schemes are determined by GMCR. The results show that the proposed model and method can effectively solve the multi-UAV cooperative air combat problem, which is proved to have certain practical significance for air combat. More specifically, the optimal target assignment schemes obtained by the proposed approach are superior to the traditional UAV gaming model that only considers Nash stability.

关键词

无人机协同 / 空战博弈 / 目标分配 / 冲突分析图模型

Key words

cooperative unmanned aerial vehicles / air combat gaming / target assignment / graph model for conflict resolution

引用本文

导出引用
黄宇铭 , 葛冰峰 , 侯泽强 , 杨克巍. 基于冲突分析图模型的多无人机协同空战博弈. 系统工程理论与实践, 2023, 43(9): 2714-2725 https://doi.org/10.12011/SETP2022-1406
HUANG Yuming , GE Bingfeng , HOU Zeqiang , YANG Kewei. Multi-unmanned aerial vehicle cooperative air combat gaming based on graph model for conflict resolution. Systems Engineering - Theory & Practice, 2023, 43(9): 2714-2725 https://doi.org/10.12011/SETP2022-1406
中图分类号: V279    O225   

参考文献

[1] 韩毅,储欣.分兵集火、凡船皆战--浅析美军"分布式杀伤"概念[J].国防科技, 2018, 39(5):98-103.Han Y, Chu X. Analysis of the US military "distributed killing" concept[J]. Defense Technology Review, 2018, 39(5):98-103.
[2] 王维平,李小波,杨松,等.智能化多无人集群作战体系动态适变机制设计方法[J].系统工程理论与实践, 2021, 41(5):1096-1106.Wang W P, Li X B, Yang S, et al. A design method of dynamic adaption mechanism for intelligent multi-unmanned-cluster combat system-of-systems[J]. Systems Engineering-Theory&Practice, 2021, 41(5):1096-1106.
[3] Hu X H, Ma H W, Ye Q S, et al. Hierarchical method of task assignment for multiple cooperating UAV teams[J]. Journal of Systems Engineering and Electronics, 2015, 26(5):1000-1009.
[4] 钟赟,姚佩阳,张杰勇,等.基于HFCM的有人-无人机作战系统交互式协同决策[J].系统工程理论与实践, 2021, 41(10):2748-2760.Zhong Y, Yao P Y, Zhang J Y, et al. Interactive cooperative decision-making of manned-unmanned aerial vehicle combat system based on HFCM[J]. Systems Engineering-Theory&Practice, 2021, 41(10):2748-2760.
[5] 王宏,李建华.无人机集群作战指挥决策博弈分析[J].军事运筹与系统工程, 2017, 31(2):11-16.Wang H, Li J H. Game analysis of UAV cluster combat command decision[J]. Military Operations Research and Systems Engineering, 2017, 31(2):11-16.
[6] 朱晓敏,刘大千,费博雯,等.局部通信条件下多无人机协同搜索方法[J].系统工程与电子技术, 2022, 44(12):3783-3791.Zhu X M, Liu D Q, Fei B W, et al. Cooperative search method for multiple UAVs under local communication[J]. Systems Engineering and Electronics, 2022, 44(12):3783-3791.
[7] 雷星,胡笑旋,王国强,等.基于Stakeberg安全博弈的多无人机边境巡逻问题研究[J].系统工程理论与实践, 2023, 43(3):889-909.Lei X, Hu X X, Wang G Q, et al. Border patrol using multiple unmanned aerial vehicles based on Stackelberg security game[J]. Systems Engineering-Theory&Practice, 2023, 43(3):889-909.
[8] 周谦,高社生,高朝辉,等.考虑目标期望摧毁概率的多无人机任务分配方法[J].西北工业大学学报, 2021, 39(3):617-623.Zhou Q, Gao S S, Gao Z H, et a1.Multi-UAVs task assignment method considering expected destruction probability of target[J]. Journal of Northwestern Polytechnical University, 2021, 39(3):617-623.
[9] 陈军,梁晶,程龙,等.基于FCM的多无人机协同攻击决策建模方法[J].航空学报, 2022, 43(7):325526.Chen J, Liang J, Cheng L, et al. Cooperative attack decision modeling method of multiple UAVs based on FCM[J]. Acta Aeronautica ET Astronautica Sinica, 2022, 43(7):325526.
[10] 朱星宇,艾剑良.多对多无人机空战的智能决策研究[J].复旦学报(自然科学版), 2021, 60(4):410-419.Zhu X Y, Ai J L. Research on intelligent decision making of many to many unmanned aerial vehicle air combat[J]. Journal of Fudan University (Natural Science), 2021, 60(4):410-419.
[11] Zhen Z Y, Xing D J, Gao C. Cooperative search-attack mission planning for multi-UAV based on intelligent self-organized algorithm[J]. Aerospace Science and Technology, 2018, 76:402-411.
[12] Li Z W, Chang Y Z, Kou Y X, et al. Approach to WTA in air combat using IAFSA-IHS algorithm[J]. Journal of Systems Engineering and Electronics, 2018, 29(3):519-529.
[13] 黄刚,李军华.基于AC-DSDE进化算法多UAVs协同目标分配[J].自动化学报, 2021, 47(1):173-184.Huang G, Li J H. Multi-UAV cooperative target allocation based on AC-DSDE evolutionary algorithm[J]. Acta Automatica Sinica, 2021, 47(1):173-184.
[14] Zhao Y, Chen Y F, Zhen Z Y, et al. Multi-weapon multi-target assignment based on hybrid genetic algorithm in uncertain environment[J]. International Journal of Advanced Robotic Systems, 2020, 17(2):1-16.
[15] Hua X, Wang Z, Yao H J, et al. Research on many-to-many target assignment for unmanned aerial vehicle swarm in three-dimensional scenarios[J]. Computers&Electrical Engineering, 2021, 91:107067.
[16] 余敏建,嵇慧明,韩其松,等.基于合作协同进化的多机空战目标分配[J].系统工程与电子技术, 2020, 42(6):1290-1300.Yu M J, Ji H M, Han Q S, et al. Multi-aircraft air combat target allocation based on cooperative co-evolutionary[J]. Systems Engineering and Electronics, 2020, 42(6):1290-1300.
[17] Zhen Z, Wen L D, Wang B L, et al. Improved contract network protocol algorithm based cooperative target allocation of heterogeneous UAV swarm[J]. Aerospace Science and Technology, 2021, 119:107054.
[18] Qin B, Zhang D, Tang S, et al. Distributed grouping cooperative dynamic task assignment method of UAV swarm[J]. Applied Sciences, 2022, 12(6):2865.
[19] 王昱,章卫国,傅莉,等.基于鲁棒优化的无人机空战博弈决策[J].系统工程与电子技术, 2015, 37(11):2531-2535.Wang Y, Zhang W G, Fu L, et al. Game decision making of UAV aerial combat based on robust optimization[J]. Systems Engineering and Electronics, 2015, 37(11):2531-2535.
[20] 孙楚,赵辉,王骁飞,等.区间数决策在无人机攻防博弈中的应用[J].计算机工程与应用, 2017, 53(15):170-175.Sun C, Zhao H, Wang X F, et al. Application of interval numbers decision to UCAV attack-defends game theory[J]. Computer Engineering and Applications, 2017, 53(15):170-175.
[21] Ma Y Y, Wang G Q, Hu X X, et al. Cooperative occupancy decision making of multi-UAV in beyond-visual-range air combat:A game theory approach[J]. IEEE Access, 2019, 8:11624-11634.
[22] Kilgour D M, Hipel K W, Fang L P. The graph model for conflicts[J]. Automatica, 1987, 23(1):41-55.
[23] Fang L P, Hipel K W, Kilgour D M. Interactive decision making:The graph model for conflict resolution[M]. New York:Wiley, 1993.
[24] Hipel K W, Fang L P. The graph model for conflict resolution and decision support[J]. IEEE Transactions on Systems, Man, and Cybernetics:Systems, 2021, 51(1):131-141.
[25] 游翰霖,李孟军,姜江,等.核危机博弈冲突消解图模型分析[J].国防科技大学学报, 2017, 39(2):193-198.You H L, Li M J, Jiang J, et al. Game analysis for nuclear crisis using the graph model for conflict resolution[J]. Journal of National University of Defense Technology, 2017, 39(2):193-198.
[26] Ge B F, Hipel K W, Fang L P, et al. An interactive portfolio decision analysis approach for system-of-systems architecting using the graph model for conflict resolution[J]. IEEE Transactions on Systems, Man, and Cybernetics:Systems, 2014, 44(10):1328-1346.
[27] Huang Y M, Ge B F, Zhao B, et al. Course of action generation using graph model for conflict resolution[C]//2020 IEEE 15th International Conference of System of Systems Engineering (SoSE), IEEE, 2020:249-254.
[28] Nash J F. Equilibrium points in n-person games[C]//Proceedings of the National Academy of Sciences, 1950, 36(1):48-49.
[29] Howard N, Paradoxes of rationality:Theory of metagames and political behavior[M]. Cambridge:MIT Press, 1971.
[30] Fraser N M, Hipel K W. Conflict analysis:Models and resolutions[M]. New York:North Holland, 1984.

基金

国家自然科学基金(71971213,72071206,72231011);湖南省研究生科研创新项目(CX20210003)
PDF(610 KB)

816

Accesses

0

Citation

Detail

段落导航
相关文章

/