大规模场景下网约车与城市交通拥堵交互影响仿真研究

蒋阳升, 张俊, 胡路

系统工程理论与实践 ›› 2022, Vol. 42 ›› Issue (11) : 3079-3089.

PDF(1920 KB)
PDF(1920 KB)
系统工程理论与实践 ›› 2022, Vol. 42 ›› Issue (11) : 3079-3089. DOI: 10.12011/SETP2022-0723
论文

大规模场景下网约车与城市交通拥堵交互影响仿真研究

    蒋阳升1,2, 张俊1,2, 胡路1,2
作者信息 +

Large-scale simulation for the interaction effect of ride-sourcing and urban congestion

    JIANG Yangsheng1,2, ZHANG Jun1,2, HU Lu1,2
Author information +
文章历史 +

摘要

网约车为居民提供了便捷的出行服务,同时也给城市交通性能带来影响,受影响的城市交通环境又将反作用于网约车运营.为了在大规模场景中探究这种交互影响机制,本文首先基于宏观基本图理论和元胞传输模型建立了同时考虑交通需求时变性,状态相关性和区域边界各项异性的交通动力学模型,将其集成到时间和事件混合驱动的模块化仿真组件中.其次,将考虑接驾半径约束的二部图匹配模型集成到出行模块中.最后,基于仿真结果,通过引入交互项的回归模型分析了出行延误率、网约车车队规模及其交互作用对网约车运营指标的影响机制与边际效应.结果表明,回归模型中各项指标的拟合优度均达到0.97以上.对于道路拥堵,网约车每增加1000辆,道路出行延误率全天平均增加1.59%,高峰期平均增加2.04%.对于网约车,不同的拥堵条件下都存在使网约车达到利润峰值的最佳车队规模,多项指标表明大型车队不利于网约车的运营.此外,在精度方面,仿真结果与真实数据差距较小.在效率方面,与微观仿真相比,仿真计算时间至少节约83.3%.

Abstract

The emergence of online ride-sourcing service dramatically facilitates the travel of residents. At the same time, it is bound to impact urban traffic, which will also affect the ride-sourcing operation. This paper explored the interaction effect mechanism in large-scale scenarios. Firstly, it establishes a traffic dynamics model based on macroscopic fundamental diagram theory and cell transmission model, which considers the time variability of traffic demand, state correlation, and regional boundary anisotropy. The Dynamics model is integrated into a simulation module driven by a hybrid drive mechanism. Secondly, the bipartite graph matching model considering the constraints of pickup radius is integrated into the travel module. Finally, based on the simulation results, a multiple nonlinear regression model analyzes the influence mechanism and marginal effect of road congestion rate, fleet size, and their interaction effect on ride-sourcing service operation indicators. The results show that the goodness of fit of each operation index is above 0.97. As for road congestion, every 1,000 additional ride-sourcing taxis will increase the road travel delay rate by 1.59% on average throughout the day and 2.04% during peak hours. For ride-sourcing services, the optimal fleet size for the taxi to reach peak profits exists under different congestion conditions. Several indicators show that large fleets are not conducive to the operation of ride-sourcing services. Meanwhile, the accuracy of the simulation is proved by comparing it with actual data. The simulation calculation time can save at least 83.3% compared with micro-simulation.

关键词

城市交通 / 大规模交通仿真 / 网约车拥堵效应 / 交互影响 / 宏观基本图

Key words

urban traffic / large-scale simulation / congestion effect of ride-sourcing services / interaction effect / macroscopic fundamental diagram

引用本文

导出引用
蒋阳升 , 张俊 , 胡路. 大规模场景下网约车与城市交通拥堵交互影响仿真研究. 系统工程理论与实践, 2022, 42(11): 3079-3089 https://doi.org/10.12011/SETP2022-0723
JIANG Yangsheng , ZHANG Jun , HU Lu. Large-scale simulation for the interaction effect of ride-sourcing and urban congestion. Systems Engineering - Theory & Practice, 2022, 42(11): 3079-3089 https://doi.org/10.12011/SETP2022-0723
中图分类号: U495   

参考文献

[1] Li Z, Hong Y, Zhang Z. An empirical analysis of on-demand ride-sharing and traffic congestion[C]// Hawaii International Conference on System Sciences, 2016: 102-119.
[2] Cramer J, Krueger A B. Disruptive change in the taxi business: The case of Uber[J]. American Economic Review, 2016, 106(5): 177-182.
[3] Diao M, Kong H, Zhao J. Impacts of transportation network companies on urban mobility[J]. Nature Sustainability, 2021, 4(6): 494-500.
[4] Erhardt G D, Roy S, Cooper D, et al. Do transportation network companies decrease or increase congestion?[J]. Science Advances, 2019(5): 1-19.
[5] Rayle L, Dai D, Chan N, et al. Just a better taxi? A survey-based comparison of taxis, transit, and ridesourcing services in San Francisco[J]. Transport Policy, 2016, 45: 168-178.
[6] Clewlow R R, Mishra G S, Clewlow R, et al. Disruptive transportation: The adoption, utilization, and impacts of ride-hailing in the united states[R]. California: University of California, 2017.
[7] Bischoff J, Maciejewski M. Simulation of city-wide replacement of private cars with autonomous taxis in Berlin[J]. Procedia Computer Science, 2016, 83: 237-244.
[8] Xu Z, Li Z, Guan Q, et al. Large-scale order dispatch in on-demand ride-hailing platforms: A learning and planning approach[C]// Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, London United Kingdom: ACM, 2018: 905-913.
[9] Martinez L M, Viegas J M. Assessing the impacts of deploying a shared self-driving urban mobility system: An agent-based model applied to the city of Lisbon, Portugal[J]. International Journal of Transportation Science and Technology, 2017, 6(1): 13-27.
[10] 杨浩雄, 张丁, 孙丽君. 网约车对交通拥堵的影响——基于复杂系统视角[J]. 系统工程, 2020, 38(3): 92-99.Yang H X, Zhang D, Sun L J. The influence of ride-hailing on traffic congestion[J]. Systems Engineering, 2020, 38(3): 92-99.
[11] Beojone C V, Geroliminis N. On the inefficiency of ride-sourcing services towards urban congestion[J]. Transportation Research Part C: Emerging Technologies, 2021, 124: 102890.
[12] Wan Y, Cao J, Huang W, et al. Perimeter control of multiregion urban traffic networks with time-varying delays[J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2020, 50(8): 2795-2803.
[13] Ziemke D, Kaddoura I, Nagel K. The MATSim open berlin scenario: A multimodal agent-based transport simulation scenario based on synthetic demand modeling and open data[J]. Procedia Computer Science, 2019, 151: 870-877.
[14] Arnott R. A bathtub model of downtown traffic congestion[J]. Journal of Urban Economics, 2013, 76: 110-121.
[15] Zhou C, Lee L H, Chew E P, et al. A modularized simulation for traffic network in container terminals via network of servers with dynamic rates[C]// 2017 Winter Simulation Conference (WSC), Las Vegas, NV: IEEE, 2017: 3150-3161.
[16] Lamotte R, Geroliminis N. The morning commute in urban areas with heterogeneous trip lengths[J]. Transportation Research Part B: Methodological, 2018, 117: 794-810.
[17] Chen Z, Wu W X, Huang H J, et al. Modeling traffic dynamics in periphery-downtown urban networks combining Vickrey's theory with macroscopic fundamental diagram: User equilibrium, system optimum, and cordon pricing[J]. Transportation Research Part B: Methodological, 2022, 155: 278-303.
[18] Ghamohammadi R, Laval J. A continuum model for cities based on the macroscopic fundamental diagram: A semi-lagrangian solution method[J]. Transportation Research Procedia, 2019, 38: 380-400.
[19] In W L. A Riemann solver for a system of hyperbolic conservation laws at a general road junction[J]. Transportation Research Part B: Methodological, 2017, 98: 21-41.
[20] Fu H, Wang Y, Tang X, et al. Empirical analysis of large-scale multimodal traffic with multi-sensor data[J]. Transportation Research Part C: Emerging Technologies, 2020, 118: 102725.
[21] 王新玉,赵志明.动态取送问题研究综述[J].系统工程理论与实践, 2021, 41(2): 319-331.Wang X Y, Zhao Z M. Survey of the dynamic pickup and delivery problems[J]. Systems Engineering — Theory & Practice, 2021, 41(2): 319-331.
[22] Li H, Zhou C, Lee B K, et al. Capacity planning for mega container terminals with multi-objective and multi-fidelity simulation optimization[J]. IISE Transactions, 2017, 49(9): 849-862.
[23] Waraich R A, Charypar D, Balmer M, et al. Performance improvements for large-scale traffic simulation in MATSim[M]. Springer International Publishing, 2015.
[24] Ji Y, Luo J, Geroliminis N. Empirical observations of congestion propagation and dynamic partitioning with probe data for large-scale systems[J]. Transportation Research Record, 2014, 2422(1): 1-11. }

基金

国家自然科学基金青年基金(71901183);四川省科学技术厅应用基础研究项目(2021YJ0066)
PDF(1920 KB)

933

Accesses

0

Citation

Detail

段落导航
相关文章

/